

BAX-3500 / 5000 / 8000 Induktionskochgerät

Betriebsanleitung

Inhaltsverzeichnis

1	Vorv	Vorwort 6					
2	Indu	Induktionskochgerät					
3	Tecl	nnische Spezifikationen	. 6				
4	Aus	zug aus der Produktpalette	.7				
5	Proc	Produkteklassifizierung					
6	Installation						
6.1	Geh	äuse und Spulenträger	. 9				
	6.1.1	Dimensionen Gehäuse 3.5kW	. 9				
	6.1.2	Dimensionen Gehäuse 5-8kW	. 9				
	6.1.3	Dimensionen Spulenträger	10				
6.2	Einb	aulage	12				
6.3	Zufü	hrung von Kaltluft / Auslass der Warmluft	13				
6.4	Hub	system	14				
	6.4.1	Abmasse	14				
	6.4.2	Aus- und einfahren	14				
6.5	Brar	dschutz	15				
6.6	Verc	Irahtungsschema REX / BAX / BOX	15				
6.7	Tem	peratursensoren / SENS-Anschluss	15				
6.8	Feld	bus / CAN-Anschluss	16				
	6.8.1	CAN-Bus mit CANopen Protokoll	16				
	6.8.2	Externe 24V-Speisung	16				
6.9	Opti	onale Schnittstellen / OPT-Anschluss	16				
	6.9.1	Externer Lüfter zur Luftumwälzung	16				
	6.9.2	Externe Leistungsreduktion	17				
6.10	Vora	ussetzungen zum elektrischen Anschluss	17				
7	Bed	ienung	18				
7.1	FLU	XRON Hall-Knebel	18				
7.2	FLU	XRON TouchSlider	18				
8	Para	metrierung	19				
8.1	Tool	s und Proramme	19				
	8.1.1	FLUXRON Downloadtool für Windows	19				
	8.1.2	FLUXRON Systemkonfigurator App für Android	20				
	8.1.3	FLUXRON Systemkonfigurator für Windows	21				
	8.1.4	Fernsteuerung / Remote Control	21				
8.2	Para	meterliste	21				
	8.2.1	Setup	21				
	8.2.2	Status	22				
	8.2.3	History	22				
	8.2.4	Config	23				

9	Kon	figuration	25
9.1	Kom	munikation über Bluetooth Classic	25
	9.1.1	Bluetooth Sichtbarkeit	25
	9.1.2	Bluetooth Pin	25
9.2	Kom	munikation über WLAN	25
	9.2.1	Verbindungsdaten	25
	9.2.2	IP Adresse	26
	9.2.3	Datenaustausch im lokalen Netzwerk über Browser	26
	9.2.4	Datenaustausch mit MQTT Cloud	26
	9.2.5	Datenaustausch mit OPC-UA Server (DIN-18898)	27
9.3	Kom	munikation über Bluetooth Low Energy	27
	9.3.1	Aktivierung	27
9.4	Kom	munikation über CAN-Bus	27
	9.4.1	CAN-Busadresse	27
	9.4.2	CAN-Busabschluss	28
	9.4.3	CAN-Bus Baudrate	28
9.5	Spul	enkonfiguration	28
9.6	Betri	ebsart	29
	9.6.1	Automatische Frequenzoptimierung "SingleZone"	30
	9.6.2	Manuelle Frequenzoptimierung "MultipleZone"	30
9.7	Pow	er Management	31
	9.7.1	Maximale Leistung	31
	9.7.2	Energiezähler	31
	9.7.3	Energieplus – S0-Schnittstelle	31
	9.7.4	Ein/Aus-Funktion über externen Kontakt	32
	9.7.5	Leistungsreduktion über externen Kontakt	32
	9.7.6	Anschluss an Leistungsoptimierunganlage (nach DIN 18875)	32
	9.7.7	Powermanagement im Geräteverbund	33
9.8	War	nhaltefunktion KeepWarm	37
	9.8.1	Temperaturvorgabe durch Einschaltung mittels Linksdrehung	37
	9.8.2	Temperaturvorgabe über absolute Knebelposition	38
9.9	38		
9.10	Pow	erShift	38
9.11	40		
9.12	Boos	ster-Charakteristik	40
9.13	Wah	I der Temperaturfühler	40
9.14	Topf	erkennung	41
9.15	7-Se	gmentanzeige	42
	9.15.1	Einstellung mittels FLUXRON APP	42
	9.15.2	Einstellung mittels FLXaccess oder CAN-Bus	42
9.16	War	nlampen Signal	43

heating<mark>xcoo</mark>king

9.17	Master-Slave Betrieb	. 43
9.18	Multiplexer Mode	. 44
	9.18.1 Anschlussschema für Einzelgenerator	. 45
	9.18.2 Anschlussschema für Doppelgenerator	. 45
	9.18.3 Anschluss Signal-Kabel	. 46
9.19	Temperaturregelung	. 46
	9.19.1 Selektion der Istwert Temperaturerfassung	. 47
	9.19.2 Aufheizsignal	. 48
	9.19.3 Anzeige im Temperaturregelung	. 49
	9.19.4 Automatische Deaktivierung Temperaturregelung	. 49
	9.19.5 Mehrspulige Temperaturregelung	. 50
	9.19.6 Leistungsreduktion im Temperaturregelmodus	. 51
	9.19.7 Regelparameter	. 51
9.20	Zusätzlicher Umgebungslüfter	. 52
9.21	Zusätzlicher Betrieb/Restwärme Signalausgang	. 52
9.22	Sollwert Skalierung	. 53
	9.22.1 Skalierung der Knebel für Temperatursollwert	. 53
	9.22.2 Skalierung des Touch-Slider für Temperaturvorgabe	. 53
	9.22.3 Skalierung der Kochstufenvorgabe	. 55
9.23	Geräuschreduktion	. 56
9.24	Absenkung der Leistungskurve	. 56
9.25	Schattenbedienung	. 56
	9.25.1 Mit zwei Hall-Knebel	. 56
	9.25.2 Mit zwei Touch Slider	. 57
9.26	Memory Stick	. 57
9.27	Externe Steuermodus	. 58
	9.27.1 Leistungsvorgabe über externe Steuerung	. 58
	9.27.2 Temperaturvorgabe über externe Steuerung	. 58
	9.27.3 Autostart	. 59
	9.27.4 Überwachung der externen Steuerung	. 59
9.28	Gateway	. 59
9.29	Restwärmeanzeige	. 60
10	Applikationsprogramme	. 61
10.1	Applikation - Kochen/Warmhalten (POT/KeepWarm) mit Slider	. 61
	10.1.1 Kochen / Warmhalten (POT / KeepWarm) mit Preset-Tasten	. 62
	10.1.2 Kochen / Warmhalten (POT / KeepWarm) mit Sliderfunktion	. 62
10.2	Applikation - Erweiterte Sensorauswertung SENS3 und SENS4	. 62
11	Betriebsstundenzähler	. 63
11.1	Einschaltzeit	. 63
11.2	Betriebsstunden	. 63
11.3	Kühlkörpertemperatur	. 63

heating<mark>xcoo</mark>king

11.4	Glastemperatur	. 63
11.5	Umgebungstemperatur	. 63
11.6	Spulenlimitierung	. 63
11.7	Spannungslimitierung	. 64
11.8	Geräte Lüfter	. 64
12	Überwachungen	. 64
12.1	Dynamik der Temperaturmessung	. 64
12.2	Plausibilität Temperaturregelung	. 65
12.3	Überwachung der Frischluftzufuhr	. 66
12.4	Überwachung Leerkochschutz	. 66
12.5	Unzulässige Umgebungstemperatur	. 67
12.6	Schutz vor Kühlkörperüberhitzung	. 67
12.7	Schutz vor Spulenüberhitzung	. 67
12.8	Induktionstauglichkeit Topf zu Kochzone	. 67
12.9	Sollwert Überwachung	. 68
12.10	Phasenausfall – Warnung	. 69
12.11	Anzeige von kurzzeitigen Limitierungen	. 69
40.40	Laisternes and Otatus Magainternella	60
12.12	Leistungs- und Status Messintervalle	. 09
12.12 13	Fehlerspeicher	. 71
12.12 13 14	Fehlerspeicher	. 71 . 71 . 71
12.12 13 14 14.1	Fehlerspeicher Fehlerbehebung Fehleranzeige	. 71 . 71 . 71 . 71
12.12 13 14 14.1 14.2	Fehlerspeicher Fehlerspeige Fehleranzeige Fehlercodes	. 71 . 71 . 71 . 71
12.12 13 14 14.1 14.2 14.3	Fehlerspeicher Fehlersbehebung Fehleranzeige Fehlercodes Warnungen	. 71 . 71 . 71 . 71 . 72 . 75
12.12 13 14 14.1 14.2 14.3 14.4	Fehlerspeicher Fehlerspeicher Fehleranzeige Fehlercodes Warnungen Mögliche Fehlerursachen und Gegenmassnahmen	. 71 . 71 . 71 . 72 . 75 . 75
12.12 13 14 14.1 14.2 14.3 14.4 15	Feilerspeicher Fehlerspeicher Fehleranzeige Fehleranzeige Warnungen Mögliche Fehlerursachen und Gegenmassnahmen Sicherheitsinformationen	. 71 . 71 . 71 . 72 . 75 . 75 . 78
12.12 13 14 14.1 14.2 14.3 14.4 15 15.1	Feilerspeicher Fehlerspeicher Fehlerbehebung Fehleranzeige Fehlercodes Warnungen Mögliche Fehlerursachen und Gegenmassnahmen Sicherheitsinformationen Risiko bei Nichtbeachten der Sicherheitsanweisung	. 71 . 71 . 71 . 72 . 75 . 75 . 75 . 78
12.12 13 14 14.1 14.2 14.3 14.4 15 15.1 15.2	Feilerspeicher Fehlerspeicher Fehlerbehebung Fehleranzeige Fehlercodes Warnungen Mögliche Fehlerursachen und Gegenmassnahmen Sicherheitsinformationen Risiko bei Nichtbeachten der Sicherheitsanweisung Sicherheitsanweisung	. 73 . 71 . 71 . 71 . 72 . 75 . 75 . 75 . 78 . 78 . 78
12.12 13 14 14.1 14.2 14.3 14.4 15 15.1 15.2 15.3	Feilerspeicher Fehlerspeicher Fehleranzeige Fehleranzeige Fehlercodes Warnungen Mögliche Fehlerursachen und Gegenmassnahmen Sicherheitsinformationen Risiko bei Nichtbeachten der Sicherheitsanweisung Sicherheitsanweisung Anwenderinformationen	. 73 . 71 . 71 . 71 . 72 . 75 . 75 . 75 . 75 . 78 . 78 . 78 . 78
12.12 13 14 14.1 14.2 14.3 14.4 15 15.1 15.2 15.3 15.4	Feilerspeicher Fehlerspeicher Fehlerbehebung Fehleranzeige Fehlercodes Warnungen Mögliche Fehlerursachen und Gegenmassnahmen Sicherheitsinformationen Risiko bei Nichtbeachten der Sicherheitsanweisung Sicherheitsanweisung Anwenderinformationen Unautorisierte Änderungen und Ersatzteile	. 73 . 71 . 71 . 72 . 75 . 75 . 75 . 78 . 78 . 78 . 78 . 78 . 78
12.12 13 14 14.1 14.2 14.3 14.4 15 15.1 15.2 15.3 15.4 16	Fehlerspeicher Fehlerspeicher Fehlerbehebung Fehleranzeige Fehlercodes Warnungen Mögliche Fehlerursachen und Gegenmassnahmen Sicherheitsinformationen Risiko bei Nichtbeachten der Sicherheitsanweisung Sicherheitsanweisung Anwenderinformationen Unautorisierte Änderungen und Ersatzteile Wartung	. 71 . 71 . 71 . 72 . 75 . 75 . 75 . 75 . 75 . 78 . 78 . 78 . 78 . 78 . 78
12.12 13 14 14.1 14.2 14.3 14.4 15.1 15.2 15.3 15.4 16 17	Feilerspeicher Fehlerspeicher Fehlerbehebung Fehleranzeige Fehlercodes Warnungen Mögliche Fehlerursachen und Gegenmassnahmen Sicherheitsinformationen Risiko bei Nichtbeachten der Sicherheitsanweisung Sicherheitsanweisung Anwenderinformationen Unautorisierte Änderungen und Ersatzteile Wartung Entsorgung	. 73 . 71 . 71 . 72 . 75 . 75 . 75 . 75 . 78 . 78 . 78 . 78 . 79 . 79 . 79
12.12 13 14 14.1 14.2 14.3 14.4 15.1 15.2 15.3 15.4 16 17 18	Feilerspeicher Fehlerspeicher Fehlerbehebung Fehlerbehebung Fehleranzeige Fehlercodes Warnungen Mögliche Fehlerursachen und Gegenmassnahmen Sicherheitsinformationen Risiko bei Nichtbeachten der Sicherheitsanweisung Sicherheitsanweisung Anwenderinformationen Unautorisierte Änderungen und Ersatzteile Wartung Entsorgung Approbationen	. 71 . 71 . 71 . 72 . 75 . 75 . 75 . 75 . 78 . 78 . 78 . 78 . 78 . 79 . 79 . 79 . 80
12.12 13 14 14.1 14.2 14.3 14.4 15.1 15.2 15.3 15.4 16 17 18 19	Feilerspeicher Fehlerspeicher Fehlerbehebung Fehlerbehebung Fehlercodes Warnungen Mögliche Fehlerursachen und Gegenmassnahmen Sicherheitsinformationen Risiko bei Nichtbeachten der Sicherheitsanweisung Sicherheitsanweisung Anwenderinformationen Unautorisierte Änderungen und Ersatzteile Wartung Entsorgung Approbationen	. 71 . 71 . 71 . 72 . 75 . 75 . 75 . 75 . 75 . 75 . 78 . 78 . 78 . 78 . 79 . 79 . 79 . 80 . 80
12.12 13 14 14.1 14.2 14.3 14.4 15.1 15.2 15.3 15.4 16 17 18 19 20	Leistungs- und Status Messintervalle Fehlerspeicher Fehlerbehebung. Fehlerbehebung. Fehleranzeige Fehlerodes Warnungen Mögliche Fehlerursachen und Gegenmassnahmen Sicherheitsinformationen Risiko bei Nichtbeachten der Sicherheitsanweisung Sicherheitsanweisung Anwenderinformationen Unautorisierte Änderungen und Ersatzteile Wartung Entsorgung Approbationen Service Kontakt	. 71 . 71 . 71 . 72 . 75 . 75 . 75 . 78 . 78 . 78 . 78 . 78 . 78 . 78 . 78

1 Vorwort

Herzliche Gratulation zum Kauf dieses Built-in BAX Induktionskochgerät. Lesen Sie bitte vor Installation und Benutzung des Induktionskochgerätes diese Betriebsanleitung sorgfältig durch. Sie enthält wichtige Informationen betreffend Betrieb, Unterhalt und Sicherheit für den optimalen Einsatz in der Grossküche.

Diese Betriebsanleitung dient auch als Nachschlagewerk. Bitte bewahren Sie sie es an einem leicht zugänglichen Ort auf.

2 Induktionskochgerät

Die Built-in BAX Induktionskochgeräte sind sehr robust gebaut, haben ein Hubsystem für einen sehr einfachen Einbau. FLUXRON Induktionskochgeräte sind wesentlich effizienter wie herkömmliche Kochgeräte.

Weitere spezielle Eigenschaften sind:

- Sofort betriebsbereit
- Zuverlässige Sicherheitsüberwachungen
- Hohe Dauerleistungen
- Hohe Effizienz für energiesparendes Kochen
- Einfache Montage
- Kompakte Bauform und leichtes Gewicht

3 Technische Spezifikationen

Leistung	3.5 kW	5.0 kW	8kW	8kW WOK			
Stromversorgung	230 VAC	3x400VAC	3x400	OVAC			
Frequenz		50 Hz					
Gewicht	10.5 kg	11 kg	11.5 kg	12 kg			
Temperatur	+5 +40°C im Betrieb / bis 50°C mit Leistungsreduuktion -40 +50°C während der Lagerung						
Feuchte	30%90%, nicht kondensierend						
Betriebsfrequenz	18.5 – 40 kHz						
Netzanschluss	3 x 1.5 mm ²	5 x 1.5 mm ²	4 x 1.5 mm ²				
Absicherung	16 A						
min Abmessungen (mm)	260 x 205 x 133	311 x 205 x 143	311 x 205 x 148	311 x 205 x 155			
max Abmessungen (mm)	260 x 205 x 260	311 x 205 x 260	311 x 205 x 265	311 x 205 x 272			
Scherenhub	127mm 116mm						
Bedienung	Hall-Knebel / optional auch mit Touch-Slider oder CAN-Bus						
Spule		Streufeld	optimiert				

4 Auszug aus der Produktpalette

				7SEG	7SEG	7SEG	LED	LED	LED	LED
Ausführung					Lift	Lift	Lift		Lift	Lift
					Bluetooth				Bluetooth	
Induktionsklasse			C/S	C/S	C/S	A	C/S	C/S	C/S	
Spulentyp	Leis- tung	Fläche [mm]	FLX-	203.10	203.12	203.13	203.14	203.15	203.17	203.18
Ø210mm	5kW	249x249	53-00							
Ø240mm	3.5kW	279x279	11-00							
Ø240mm	5kW	279x279	13-00							
Ø270mm	5kW	309x309	33-00							
Ø270mm	8kW	309x309	37-00							
Ø305mm	8kW	344x344	47-00							
∎2x130x270mm	5kW	309x309	34-00							
∎185x385mm	3.5kW	424x224	60-00							
∎2x145x305mm	8kW	344x344	48-00							
∎4x145x145mm	8kW	344x344	49-00							
∎4x160x160mm	8kW	372x372	89-00							
WOK 300mm	3.5kW	320x320	21-00							
WOK 300mm	5kW	320x320	23-00							
WOK 300mm	8kW	320x320	27-00							
	1									
Spulenlift				120mm						
Fühler				1-4 x PT100	1-4 x PT100	1-4 x PT100	NTC / PT100	1-4 x PT100	1-4 x PT100	1-4 x PT100
Schattenbedie- nung										
Energieoptimie- rung										
Warmhaltefunk- tion	aktiviert	bar								
Auflösung Koch- stufe				0-255	0-255	0-255	0-9	0-255	0-255	0-255
Topferkennung	Ø<8cm kannt	n werden nic	ht er-	Ø>10cm						
Leerkochschutz	Abschal	tpunkt		≈ 370 - 450°C	≈ 370 - 450°C	≈ 370 - 450°C	≈ 480 - 550°C	≈ 370 - 450°C	≈ 370 - 450°C	≈ 370 - 450°C
Optionen					I	1	1		1	1
Bluetooth	über Se	rvice-Schnitt	stelle	optional	optional			optional	optional	
CAN				optional	optional	optional		optional	optional	optional
12C	Schnitts	telle								
7-Segment Dis- play	bestück	t						optional	optional	optional
LED (grün)	Anschlu	ss möglich		optional	optional	optional				

verfügbar bald erhältlich

5 Produkteklassifizierung

Die Fluxron Induktionsgeräte sind in verschiedenen Ausführungen, sogenannten Klassen verfügbar. Die Eigenschaften und Funktionen der jeweiligen Klasse ist in folgender Liste einsehbar:

	Induction	Induction	Induction
	A-Class	C-Class	<mark>S</mark> -Class
Funktion			
Bedienung			
Potentiometer	\checkmark		
Touch Slider		\checkmark	\checkmark
Hall Knebel	\checkmark	\checkmark	✓
Bluetooth Kommunikation			
Bluetooth Schnittstelle		\checkmark	\checkmark
mit FLUXRON App verwendbar		\checkmark	✓
Leistungsklassen			
3.5 kW	\checkmark	\checkmark	
5 kW	\checkmark	\checkmark	✓
8 kW		\checkmark	✓
2x 5 kW			\checkmark
2x 8 kW			\checkmark
Überwachungen			
Glastemperatur	\checkmark	\checkmark	\checkmark
Umgebungstemperatur		\checkmark	\checkmark
IGBT		\checkmark	\checkmark
Generator Konfiguration			
Topferkennung einfach	\checkmark	\checkmark	\checkmark
Topferkennung hochauflösend		\checkmark	\checkmark
Temperaturwarnung		\checkmark	\checkmark
Warmhaltefunktion KWF		\checkmark	\checkmark
Schnittstelle für SICOTRONICS Energieoptimierung		\checkmark	\checkmark
CAN Schnittstelle		\checkmark	✓
Ein-Zonen Flächeninduktion		\checkmark	\checkmark
Leistungsreduktion (digitaler Eingang)		\checkmark	\checkmark
Mehr-Zonen Flächeninduktion			\checkmark
automatisch optimierte Spulenparameter			~
Betriebsfrequenz einstellbar			\checkmark
Maximale Leistung einstellbar			\checkmark
Powermanagement im Geräteverbund			\checkmark
Memory Modul			✓

6 Installation

6.1 Gehäuse und Spulenträger

6.1.1 Dimensionen Gehäuse 3.5kW

6.1.2 Dimensionen Gehäuse 5-8kW

6.1.3 Dimensionen Spulenträger

	L1	B1	L2	B2
Spulenträger 249mm x 249mm	249 mm	249 mm	226 mm	226 mm
Spulenträger 279mm x 279mm	279 mm	279 mm	256 mm	256 mm
Spulenträger 309mm x 309mm	309 mm	309 mm	286 mm	286 mm
Spulenträger 344mm x 344mm	344 mm	344 mm	321 mm	321 mm
Spulenträger 372mm x 372mm	372mm	372 mm	349 mm	349 mm
Spulenträger 224mm x 424mm	224mm	424 mm	201 mm	401 mm
Spulenträger 320mm x 320mm (WOK)	320mm	320 mm	297 mm	297 mm

Flachhspulenträger

38,50 16

4

Befestigungsdetail LED

6.2 Einbaulage

Werden Führungsschienen mit H > 25mm verwendet müssen zusätzliche Luftführungsbleche verwendet werden. Es ist wichtig, dass die Frischluft von unter der Einbauplatte angesogen wird .

6.3 Zuführung von Kaltluft / Auslass der Warmluft

Für die optimale Kühlung der Geräte sind folgende Massnahmen notwendig:

- Bei der Luftzufuhr sind Fettfilter vorzusehen.
- Die Bodenplatte verhindert einen thermischen Kurzschluss (Einsaugen von erwärmter Abluft).
- Die Luftführung leitet die Frischluft zum Ventilator.
- Das Gerät wird aktiv belüftet und benötigt einen ungehinderten Luftstrom. Eine ungeeignete Installation kann zu Betriebseinschränkungen oder einem vollständigem Abschalten des Gerätes führen. Für die optimale Leistungsfähigkeit sind Luft Ein- und Austritt mindestens 100mm von Wänden und anderen Objekten frei zu halten.
- Das Gerät muss so eingebaut werden, dass die austretende Luft nicht zur Lufteintrittsöffnung geleitet wird.
- Die Temperatur der eintretenden Luft muss kleiner 40°C sein.
- Das Gerät muss in genügendem Abstand zu anderen Hitzequellen (Gaskocher, Ofen etc.) aufgestellt werden.

Warnung:

Eine ungenügende oder eingeschränkte Luftzufuhr kann zu einer Abschaltung des Gerätes und zu einer Reduktion der Geräte Lebensdauer führen.

Werden mehrere Generatoren in einem Herd eingebaut, können zusätzliche Lüfter die Kühlung verbessern.

6.4 Hubsystem

6.4.1 Abmasse

Abmasse	H1 [mm]	H2 [mm]	Htot [mm]
Leistung			
3.5 kW	113	27 - 120	135 - 240
5 kW	118	27 - 122	140 - 240
8 kW	118	32 - 127	145 - 245
3.5 kW WOK	113	95 - 190	208 - 303
5 - 8kW WOK	118	95 - 190	213 - 308

6.4.2 Aus- und einfahren

Ausfahren			
Platzieren Sie den BAX Generator am vorgesehenen Ort:			
 Heben Sie den Spulenträger mit der Hand bis zum Ceranglas hoch 			
 Drücken Sie gegen die beiden Zugblech- Laschen, bis sie ein bis zwei Mal klicken. So wird die Vorspannkraft gegen das Ceranglas eingestellt. 			
Einfahren			
 Drehen Sie auf beiden Seiten an den Zug- blech-Laschen. Somit werden die Federn entriegelt und das Spulenblech kann ein- gefahren werden. 			

6.5 Brandschutz

Alle Objekte, die in Kontakt mit dem Gerät sind, müssen aus nicht brennbarem Material bestehen.

6.6 Verdrahtungsschema REX / BAX / BOX

6.7 Temperatursensoren / SENS-Anschluss

Abhängig vom eingesetzten Spulentyp werden 1 - 4 Temperatursensoren angeschlossen.

Rundspule -> Sens 1
Rechteckspule
-> Sens 1
-> Sens 2
Quadratspule
Quadratspule -> Sens 1
Quadratspule -> Sens 1 -> Sens 2
Quadratspule -> Sens 1 -> Sens 2 -> Sens 3

Besitzt eine Spule **einen Temperatursensor** so ist dieser am **Sens1** Eingang anzuschliessen.

Besitzt eine Spule **zwei Temperatursensoren** so sind diese am **Sens1** und **Sens2** Eingang anzuschliessen.

Besitzt eine Spule **vier Temperatursensoren** so sind diese am **Sens1** bis **Sens4** Eingang anzuschliessen.

6.8 Feldbus / CAN-Anschluss

6.8.1 CAN-Bus mit CANopen Protokoll

Der dreipolige CAN-Bus (CAN high / CAN low / CAN GND) wird an den Pins 3 bis 5 angeschlossen. Der 120 Ohm Busabschluss ist standardmässig im Gerät integriert und kann via Software ausgeschaltet werden. Der REX-Generator wird mit einer CAN-Bus Adresse von 1 ausgeliefert. Diese kann ebenfalls per Software geändert werden.

Ein zusätzliches Safty-Signal (Pin 2) ermöglicht die zweikanalige Freigabe bei einer Sollwertvorgabe über den CAN-Bus.

6.8.2 Externe 24V-Speisung

Die interne Steuerung REX Generators lässt sich auch über eine externe +24V Spannungsquelle, welche an Pin1 und 6 angeschlossen wird, auch ohne Netzspannung betreiben.

6.9 Optionale Schnittstellen / OPT-Anschluss

An den OPT-Signalklemmen werden die unterschiedlichsten Energieoptimierungssysteme, sowie externe Lüfter und andere Aktoren (Bsp. Multiplexer) angeschlossen.

Die interne Beschaltung der Signalklemmen ist wie folgt:

6.9.1 Externer Lüfter zur Luftumwälzung

Ein externer +24V Lüfter kann zwischen OPT-Klemen 2+ und 2- angeschlossen werden. Falls sich die Spule oder die Umgebungsluft durch den aktuellen Kochbetrieb stark erwärmt, kann der angeschlossenen Lüfter zur Umwälzung der Raumuft des Kochgerät verwendet werden.

6.9.2 Externe Leistungsreduktion

Mit einem externen potentialfreien Kontakt zwischen OPT 1- und OPT 1+ wird die Leistungsreduktion aktiviert werden. Die Leistung wird bei Betätigung des extrenen Kontaktesstandardmässig um 33% reduziert.

Es können auch mehrere Generatoren über den potentialfreien Kontakt parallel geschaltet werden:

6.10 Voraussetzungen zum elektrischen Anschluss

- Die Stromversorgung muss mit den Angaben auf dem Typenschild übereinstimmen.
- Es müssen Kabelquerschnitte gemäss der technischen Spezifikation verwendet werden.
- Der Netzanschluss muss entsprechend den gültigen Normen ausgeführt und allpolig vom Versorgungsnetz abschaltbar sein.
- Beim Betrieb an einem Fehlerstromschutzschalter (FI) ist der maximale Fehlerstrom von 30mA zu berücksichtigen. Werden mehrere Geräte am gleichen FI angeschlossen, kann dieser unnötig auslösen.

7 Bedienung

Die FLUXRON Generatoren können jeweils mittels

- Hall-Knebel
- Touch Slider

bedient werden. Die maximale Leitungslänge zwischen dem Bedienungselement und dem Generator darf 7 m nicht überschreiten. Werden gleichzeitig ein Hall-Knebel und ein Touch Slider angeschlossen sein, so wird der Touch Slider priorisiert und der Hall-Knebel nicht ausgewertet.

Sind weder Hall-Knebel noch TouchSlider noch Hall-Knebel angeschossen wird automatisch der Analogeingang als Signaleingang ausgewertet.

7.1 FLUXRON Hall-Knebel

Im Gegensatz zu den herkömmlichen Potentiometer-Knebeln wird beim Hall-Knebel die Winkellage der Achse kontaktlos mit Hallsensoren ermittelt und sowohl als lineare Spannung (analog zum Potentiometer) als auch über eine serielle Schnittstelle ausgegeben.

Eine LED zeigt den aktuellen Zustand des Kochsystems an:

LED	Zustand
Aus	Kochgerät ist ausgeschaltet
Ein	Kochgerät im Betrieb
Blinkt	Gerät befindet sich im Topferkennungsmode oder der Fehlermode ist aktiv. Die Anzahl der kurzen Leuchtimpulse zeigt den Fehlercode an.

Schliessen Sie den Hall-Knebel am mit "KNOB A" oder "KNOB B" bezeichneten Anschluss an.

7.2 FLUXRON TouchSlider

Mit dem Touch Slider lässt sich die Leistung durch das Berühren oder durch das Gleiten mit dem Finger über die Bedienoberfläche stufenlos einstellen. Durch das Antippen der ON/OFF Tastfläche wird das Gerät ein- und wieder ausgeschaltet. Ein LED Bargraph visualisiert die Grösse der angewählten Vorgabe. Die integrierte 4x7Segment Display zeigt die Kochstufe (einstellig oder in Prozent) oder den Temperatursollwert sowie im Fehlerfall den Errorcode an.

8 Parametrierung

Die Induktionsgeneratoren verfügen über diverse Parameter, welche individuell auf die gewünschten Bedürfnisse eingestellt werden können.

8.1 Tools und Proramme

Jeder Parameter wird über seine Adresse (Index und Subindex) angesprochen. Um Parameter zu ändern oder auszulesen gibt es drei Möglichkeiten.

Hilfsmittel	Tool / Programm				
Computer	FLUXRON Systemkonfigurator für Windows				
Computer	FLUXRON Downloadtool für Windows				
Smartphone	FLUXRON APP				

8.1.1 FLUXRON Downloadtool für Windows

Mit dem Downloadtool können beliebige Parameter–Settings gleichzeitig per Bluetooth auf den REX Induktionsgenerator heruntergeladen werden. Voraussetzung ist, dass das Gerät mit der Bluetooth Schnittstelle ausgerüstet ist. Die Parameter werden in einem Standard Excel-Sheet hinterlegt.

F		RO	on			disconnect
Path	of Parameter-File (*.xls)				
^ፄ C:\(User\Desktop\ET-P	arameter I	actory-Setti	ngs.xls	Blueto	oth connected
Path	of Setup-File (*.ini)	1			ET1. L	IN Provisions 1.0 . Serial Nr. 225
8				E		W REVISION: 1.0; Senai Will 230
) 6 Dow	nload					
status OK	function	Index 3058	Subindex	parameter Display hysteresis	value	abort code
OK	write_and_verify	3057	1	Ref temperature 270	87	
ОК	write_and_verify	3056	1	Ref temperature 90	33	
Ж	write_and_verify	3055	1	Pos gradient limit	2	
Ж	write_and_verify	3054	1	Neg gradient limit	-2	
ОК	write_and_verify	3053	1	Temperature max limit	100	
ОК	write_and_verify	3052	1	Temperature high limit	90	
)K	write_and_verify	3051	1	Nominal Current	10	
ЭК		00	0	Testablauf	0	

8.1.2 FLUXRON Systemkonfigurator App für Android

Zum Konfigurieren des Induktionsgenerators wird Bluetooth benötigt. Je nach Version ist diese Schnittstelle fest im Generator eingebaut oder über einen optionalen Dongle verfügbar.

8.1.2.1 Installation und Konfiguration

Den FLUXRON Systemkonfigurator finden Sie im Android Play Store unter "FLXtool". Bitte installieren Sie diese APP. Anschliessend der untenstehenden Anweisung folgen:

8.1.3 FLUXRON Systemkonfigurator für Windows

Der Systemkonfigurator für Windows ist auf Wunsch als Beta-Version verfügbar. Die Anwendung wird nur in enger Zusammenarbeit mit dem Herstellerwerk empfohlen.

8.1.4 Fernsteuerung / Remote Control

Über Teamviewer lässt sich die FLUXRON Tool von einem beliebigen PC fernsteuern. Dazu muss auf dem Android Handy/Tablet die App Teamviewer QuickSupport und auf dem Remote PC die neuste Teamviewer Software installiert sein. Beide Programme sind für private Anwendung kostenlos über die Webseite <u>www.teamviewer.com</u> erhältlich.

Somit lassen sich alle Bluetooth-fähigen FLUXRON Geräte einfach vom Backoffice fernwarten.

8.2 Parameterliste

Mittels der FLUXRON App können in den Menus Setup, Status, History und Config diverse Parameter ausgelesen und bei Bedarf modifiziert werden. Diese Parameter sind auch über den CAN-Bus mittels CANopen Protokoll über SDO-Kommunikation mit Index und Subindex zugänglich.

8.2.1 Setup

Unter dem Menu "Setup" kann die Standard Funktionalität an Kundenbedürfnisse angepasst werden. Unter anderem kann bei Bedarf die Topferkennung nachjustiert oder die 7-Segement-Anzeige konfiguriert werden.

Parameter	Index	Subindex	Datentyp	read/write	Kurzbeschreibung	
FLX Config	0x3035	1	Unsigned-16	read/write	Bit 11 = disable sensor dynamic SUP Bit 10 = disable sensor plausibility SUP Bit9 = AutoStart Bit8 = PowerShift Bit7 = KWF full range bit6 = MasterControl bit5 = TempControl bit4 = -70 Hz bit3 = noPanDetection bit2 = TouchControl bit1 = extControl bit0 = Single Zone 0 = kein Sensor	
CoilSetup	0x2000	4	Unsigned-8	read/write	0 = kein Sensor 1-4 = 1-4 Sensoren >10 = auto Setup, based on coil type	
PMG Enable	0x2002	1	Unsigned-8	read/write	Power management enable	
PMG Reduction max	0x2002	2	Unsigned-16	read/write	Maximum reduction during limitation in %	
PAN Fault E04 delay	0x3037	6	Unsigned-16	read/write	Error 4 delay in s	
PAN Detect act	0x3037	9	Integer-16	read	Actual level for PAN detection	
PAN Detect on limit	0x3037	7	Integer-16	read/write	Pan detection level, where Pan will be de- tected	
PAN Detect off limit	0x3037	8	Integer-16 read/write		Pan detection level, where Pan will be losed again	
FLX Frequency start	0x3035	4	Unsigned-32	read/write	Operating frequency at start up in Hz	
FLX Power max	0x3035	В	Integer-16	read/write	Maxmum power of the generator in W	
FLX Warning F temp	0x3035	18	Integer-8	read/write	Heatsink temperature level, where warning F "fett filter cleaning" will be shown	
7SEG Config	0x2000	2	Unsigned-8	read/write	 7-Segmentdisplay with 1 element 0: Cook level from 1 to 9 1: Cook level from 1 to 9; display 180° turned 4: P/Pmax in 10 %; display 180° turned 7-Segmentdisplay besteht aus 3-4 elements 48: Cook level from 1 to 9 49: Cook level from 1 to 9; display 180° turned 50: Kochstufe in % 51: Kochstufe in %; display 180° turned 54: P/Pmax in % 55: P/Pmax in %; display 180° turned 	

8.2.2 Status

Unter dem Menu Status können die aktuellen Betriebsinformationen wie zum Beispiel Temperaturmesswerte, Knebelpositionen, Betriebsfrequenzen und Limitierungen ausgelesen werden.

Parameter	Index	Subindex	Datentyp	read/write	Kurzbeschreibung
Software Version	0x100A	0	String	read	Manufacturer Software Version
Hardware Version	0x1009	0	String	read	Manufacturer Hardware Version
Temp sensor 1	0x3028	1	Integer-16	read	Sensor 1 Temperatur in °C
Temp sensor 2	0x3028	2	Integer-16	read	Sensor 2 Temperatur in °C
Temp sensor 3	0x3028	3	Integer-16	read	Sensor 3 Temperatur in °C
Temp sensor 4	0x3028	4	Integer-16	read	Sensor 4 Temperatur in °C
Temp glass	0x3037	1	Integer-16	read	Glass Temperatur in °C
Temp heatsink	0x3028	8/9	Integer-16	read	Heatsink Temperatur in °C
Temp environment	0x3021	6	Integer-16	read	Environment Temperatur in °C
KWF Act power level	0x2001	3	Unsigned-16	read	Actual Power level in W
KFW Setpoint	0x2001	6	Unsigned-16	read	Target Temperatur in °C
Knob A digital	0x3001	1	Unsigned-8	read	0 - 255 = 0 - 100%
Knob B digital	0x3001	2	Unsigned-8	read	0 - 255 = 0 - 100%
FLX Frequency act	0x3035	20	Unsigned-32	read	Operating frequency in Hz
FLX Power level	0x3035	5	Unsigned-8	read	Actual Power level in W
FLX Coil peak current	0x3035	6	Unsigned-16	read	Coil current in A
FLX Power act	0x3035	7	Integer-16	read	Active Power in W
FLX Power factor	0x3035	9	Integer-16	read	Power factor in %
FLX Fan level	0x3035	С	Integer-16	read	Actual fan level in %
FLX IGBT losses	0x3035	14	Integer-16	read	Losses in W of one high IGBT
PMG Lim gradient	0x2002	3	Unsigned-16	read	Power in % while max glass gradient is reached
PMG Lim losses	0x2002	4	Unsigned-16	read	Power in % while max IGBT losses is reached
PMG Lim power	0x2002	5	Unsigned-16	read	Power in % while max power is reached
PMG Lim temp	0x2002	6	Unsigned-16	read	Power in % while max temp is reached
PMG Lim curr	0x2002	7	Unsigned-16	read	Power in % while over current limitation is active
PMG Lim volt	0x2002	8	Unsigned-16	read	Power in % while max capacitor voltage is active
PMG Lim i2t	0x2002	9	Unsigned-16	read	Power in % while max i2t coil current is active
PMG Lim network	0x2002	А	Unsigned-16	read	Power in % while max network power is reached
PMG Lim powerfactor	0x2002	В	Unsigned-16	read	Power in % while power factor reduction is ac- tive
PMG Lim reduction	0x2002	С	Unsigned-16	read	Power in % while power management is active

8.2.3 History

Unter dem Menu History können die Betriebsdaten (Betriebsstunden, Stundenzähler ausserordentlicher Betriebsfälle sowie der Fehlerspeicher ausgelesen werden.

Parameter	Index	Subindex	x Datentyp read/write Description		Description
Power on time	0x3006	1	Unsigned-32	read	Operating counter power on in h
Working time	0x3006	2	Unsigned-32	read	Operating counter working time in h
Heatsink <50°C	0x3006	3	Unsigned-32	read	Operating counter heatsink < 60° in h
Heatsink 50 - 59 °C	0x3006	4	Unsigned-32	read	Operating counter heatsink 50-59 °C in h
Heatsink 60 - 74 °C	0x3006	5	Unsigned-32	read	Operating counter heatsink 60-74 °C in h
Heatsink >74 °C	0x3006	6	Unsigned-32	read	Operating counter heatsink > 74 °C in h
Glass <100°C	0x3006	7	Unsigned-32	read Operating counter glass temperature <100	
Glass 100 - 179°C	0x3006	8	Unsigned-32	read Operating counter glass temperature 100-	
Glass 180 - 243°C	0x3006	9	Unsigned-32	read	Operating counter glass temperature 140-199°C
Glass >243°C	0x3006	А	Unsigned-32	read Operating counter glass temperature >200°C	

I2t LimTime	0x3006	В	Unsigned-32	read	Operating counter i2t limitation in h		
Volt limTime	0x3006	С	Unsigned-32	read	Operating counter capVoltage lim reached in h		
Fan working time	0x3006	D	Unsigned-32	read	Operating counter fan working time in h		
Energy Counter	0x2004	4	Unsigned-32	read	Energy counter in kWh		
Error code	0x1001	0	Unsigned–8	read	Actual Error code (0= no error)		
Error 1 (Nr / Time)	0x3005	1	Unsigned-32	read			
Error 2 (Nr / Time)	0x3005	2	Unsigned-32	read			
Error 3 (Nr / Time)	0x3005	3	Unsigned-32	read			
Error 4 (Nr / Time)	0x3005	4	Unsigned-32	read			
Error 5 (Nr / Time)	0x3005	5	Unsigned-32	read	Error History		
Error 6 (Nr / Time)	0x3005	6	Unsigned-32	read			
Error 7 (Nr / Time)	0x3005	7	Unsigned-32	read			
Error 8 (Nr / Time)	0x3005	8	Unsigned-32	read			
Error 9 (Nr / Time)	0x3005	9	Unsigned-32	read			
Error 10 (Nr / Time)	0x3005	А	Unsigned-32	read			

8.2.4 Config

Unter dem Menu Config können Spezialfunktionen aktiviert und konfiguriert werden.Zur Anwendung dieser Funktionen wird der besuch einer Service-Schulung vorausgesetzt. Dementsprechend ist der Zugang zu diesem Menu über ein separates Passwort geschützt.

Parameter	Index	Subindex	Datentyp	read/write	e Description	
TCOA Config	0x3039	2	Unsigned-8	read/write	Bit0: 1 = Autostart (external control) Bit1: 1 = Preset1 active Bit2: 1 = automatic Temp Sensor Detection Bit3: 1 = Disable IPart at 90°-110°C	
TCOA Control	0x3039	2	Unsigned-8	read/write	Bit0: 1 = On Bit1: 1 = Stopped	
TCOA TSetpoint	0x3039	6	Integer-16	read/write	Target temperature in °C	
TCOA TPreset	0x3039	С	Integer-16	read/write	Target temperature in °C	
TCOA TRef 90	0x3039	17	Integer-16	read/write	Desired temperature at knob angle 90°	
TCOA TRef 270	0x3039	18	Integer-16	read/write	Desired temperature at knob angle 270°	
TCOA TMax	0x3039	A	Integer-16	read/write	Limitation of setpoint in °C	
TCOA TSetpoint act	0x3039	1C	Integer-16	read/write	Target temperature in °C	
TCOA TAct	0x3039	7	Integer-16	read	Actual temperature in °C	
TCOA TAct gain	0x3039	16	Integer-16	read/write	Actual Gain =x/1000	
TCOA TAct offset	0x3039	В	Integer-16	read/write	tempActual = gain * temp + offset (in °C)	
TCOA TCont P-part	0x3039	8	Unsigned-16	read/write	ControllerOut (power level) = deltaT *P-Part	
TCOA TCont I-part	0x3039	9	Unsigned-16	read/write	ControllerOutRate(powerLevel/s)=deltaT*I- Part/100	
TCOA PowLevel max	0x3039	5	Unsigned-8	read/write	0 - 255 = 0 - 100%	
TCOA PowLevel gain	0x3039	1A	Integer-16	read/write	Gain = x/1000	
TCOA PowLevel offset	0x3039	19	Integer-16	read/write	powerLevel = (gain*x) + offset	
TCOA PowLevel active	0x3039	1B	Unsigned-8	read/write	Enable temperature control up to this level (0=disabled)	
TCOA TGradientFF	0x3039	D	Integer-16	read/write	X=overshoot[°C]*heatingTime[s]/reference- Vlaue[°C]	
TCOA TReached	0x3039	10	Integer-16	read/write	setpoint reached if actual temp is within this range [0.1°]	
TCOB Config	0x303A	2	Unsigned-8	read/write	Bit0: 1 = Autostart (external control) Bit1: 1 = Preset1 active Bit2: 1 = automatic Temp Sensor Detection Bit3: 1 = Disable IPart at 90°-110°C	
TCOB Control	0x303A	2	Unsigned-8	read/write	Bit0: 1 = On Bit1: 1 = Stopped	
TCOB TSetpoint	0x303A	1C	Integer-16	read	Target temperature in °C	
TCOB TPreset	0x303A	С	Integer-16	read/write	Target temperature in °C	
TCOB TRef 90	0x303A	17	Integer-16	read/write	Desired temperature at knob angle 90°	
TCOB TRef 270	0x303A	18	Integer-16	read/write	Desired temperature at knob angle 270°	
TCOB TMax	0x303A	А	Integer-16	read/write	Limitation of setpoint in °C	
TCOB TSetpoint act	0x303A	1C	Integer-16	read/write	Target temperature in °C	
TCOB TAct	0x303A	7	Integer-16	read	Actual temperature in °C	
TCOB TAct gain	0x303A	16	Integer-16	read/write	Actual Gain =x/1000	

heating<mark>xcoo</mark>king

TCOB TAct offset	0x303A	В	Integer-16	read/write	tempActual = gain * temp + offset (in °C)	
TCOB TCont P-part	0x303A	8	Unsigned-16	read/write	ControllerOut (power level) = deltaT *P-Part	
TCOB TCont I-part	0x303A	А	Unsigned-16	read/write	ControllerOutRate(powerLevel/s)=deltaT*I- Part/100	
TCOB PowLevel max	0x303A	5	Unsigned-8	read/write	0 - 255 = 0 - 100%	
TCOB PowLevel gain	0x303A	1A	Integer-16	read/write	Gain = x/1000	
TCOB PowLevel offset	0x303A	19	Integer-16	read/write	powerLevel = (gain*x) + offset	
TCOB TGradientFF	0x303A	D	Integer-16	read/write	X=overshoot[°C]*heatingTime[s]/reference- Vlaue[°C]	
TCOB TCont active level	0x303A	1B	Unsigned-8	read/write	Enable temperature control up to this level (0=disabled)	
TCOB TReached	0x303A	10	Integer-16	read/write	setpoint reached if actual temp is within this range [0.1°]	
MUX Enable	0x303B	1	Unsigned-8	read/write	Bit0: 1= 2 coil operation enabled Bit1: 1 = external relais	
MUX PeriodTime	0x303B	3	Unsigned-16	read/write	Periodtime for Multiplexer [0.1 sec]	
MUX SwitchTime	0x303B	4	Unsigned-16	read/write	time between switching for Multiplexer [0.1 sec]	
MUX DutyCycle	0x303B	6	Unsigned-8	read/write	Duty Cycle in % (active time coil A / coil B)	
TCOA SUP Delay cnt	0x3039	1D	Unsigned-16	read	Supervision Power Counter A: 0 = error	
TCOB SUP Delay cnt	0x303A	1D	Unsigned-16	read	Supervision Power Counter B: 0 = error	
SUP DeltaT	0x303C	1	Integer-16	read/write	Temperatur Hysterese	
SUP Power high	0x303C	2	Integer-16	read/write	Supervision Power Characteristic Power high	
SUP Power low	0x303C	3	Integer-16	read/write	Supervision Power Characteristic Power low	
SUP Gradient high	0x303C	4	Integer-16	read/write	Supervision Power Characteristic Gradient high	
SUP Gradient low	0x303C	5	Integer-16	read/write	Supervision Power Characteristic Gradent low	
SUP Delay	0x303C	6	Unsigned-16	read/write	Delay / Counter maximum	
PMG Network enable	0x2003	1	Unsigned-8	read/write	 1 = opt1 closed enables power reduction 2= opt1 closed disables power reduction 3 = opt1 open enables power reduction 4 = opt1 open disables generator 	
PMG Network pow max	0x2003	4	Unsigned-16	read/write	Maximal network power, *100 to get W	
Gradient Lim IowT	0x3037	4	Integer-8	read/write	Gradient limit at low Temp (divide by 10 to get °C/s)	
Heatsink fan min	0x3035	16	Integer-8	read/write	Low temperature in °C for FAN off	
Heatsink fan max	0x3035	17	Integer-8	read/write	High temperature in °C for FAN max speed	
FLX Var freq min	0x3035	1D	Unsigned-32	read/write	minimal frequency in Hz for songe zone mode	
FLX Var freq max	0x3035	1E	Unsigned-32	read/write	maximal frequency in Hz for songe zone mode	
KWF Enable	0x2001	1	Unsigned-8	read/write	enable KeepWarm function	
KWF Max power	0x2001	2	Unsigned-16	read/write	Maximal power when in KeepWarm function mode	
KWF Temp offset	0x2001	9	Integer-8	read/write	Temperature Offset in °C (in KeepWarm func- tion)	
BLT Visibility	0x2000	1	Unsigned-8	read/write	Bluetooth connection visibility : 0 : visible in ERROR, P, 10min after last comm. 1 : permanently ON	
KMX Config	0x3028	E	Unsigned-8	read/write	0: PT1000 Temperatur Sensor (Berner-Spule) 1: PT100 Temperatur Sensor (FLUXRON-Spule) 2: PT920 Temperatur Sensor (EGO-Spule)	
CAN Config	0x3035	1	Unsigned-8	read/write	Bit0: 1 = 120 Ohm CAN Termination activ	
CAN NodeID	0x3033	5	Unsigned-8	read/write	1 -100: Generator (1 - 100) 101-110: I/O-Interface (Generator ID + 100) 111-120: CAN-Gateway	
SUP TStep hyst temp	0x303C	7	Integer-16	read/write	Hysterese for activation of the dynamic supervision of the temp sensor in 0.1°C	
SUP TStep filter time	0x303C	9	Unsigned-16	read/write	Fliter time constant (tau) in 0.1s	
SUP TStep error lim	0x303C	8	Integer-16	read/write	Limitation of the dynamic supervision of the temp sensor in °Cs	
TCOA SUP TStep sum	0x3039	1F	Integer-16	read	Counter of the dynamic supervision of the temp sensor in °Cs	
TCOB SUP TStep sum	0x303A	1F	Integer-16	read	Counter of the dynamic supervision of the temp sensor in °Cs	
Ambient fan on	0x3035	27	Integer-8	read/write	Switch on level of the ambient fan in °C	
Ambient fan off	0x3035	28	Integer-8	read/write	Switch off level of the ambient fan in °C	
Ambient fan limit	0x3035	29	Integer-16	read/write	Glass temperature where the the ambient fan will be switched on in °C	
ENG Enable	0x2004	1	Unsigned-8	read/write	1= Energy puls enable at OPT 2	
ENG Puls rate	0x2004	2	Unsigned-16	read/write	Pulses per kWh	
ENG Puls length	0x2004	3	Unsigned-16	read/write	Engery Puls length in ms	

9 Konfiguration

9.1 Kommunikation über Bluetooth Classic

Bei den Induktionsklassen S und C kann entweder über einen externen Service Bluetooth Dongle oder über ein internes, optional bestücktes Bluetooth-Modul kommuniziert werden

9.1.1 Bluetooth Sichtbarkeit

Ist der REX Generator mit einem Bluetooth Modul ausgestattet, kann dessen Sichtbarkeit für bluetoothfähige Geräte über den Parameter BLT Visibility definiert werden.

- 0: Bluetooth Modul sichtbar, wenn Gerät im Error Modus, im "P" Modus oder maximal 5 min nach der letzten Aus-Ein Knebeldrehung.
- 1: Bluetooth Modul immer sichtbar

	Index	Subindex	Default	Туре
BLT Visibility	0x2000	1	0	Unsigned-8

9.1.2 Bluetooth Pin

Der PIN, welcher für das erstmalige Pairing eingegeben werden muss, kann werkseitig auf kundenspezifische Werte parametriert werden. Nachdem der BLT Pin geändert wurde, ist ein Neustart durch das Unterbrechen der Versorgungsspannung des Gerätes nötig. Ist der BLT Pin unbekannt, kann mit dem Gerät nicht über Bluetooth kommuniziert werden.

1234:	Default Bluetooth PIN
1000-9999:	Bereich kundenspezifischer Bluetooth PINs

	Index	Subindex	Default	Туре
BLT Pin	0x2000	A	1234	Unsigned-16

9.2 Kommunikation über WLAN

Die neusten S-Class Induktionssystemen sind optional mit einer WLAN Schnittstelle ausgestattet. Aktivierung

```
Enable WLAN (use local IP address in browser e.g. 192.168.2.220)
```

In der Standardkonfiguration ist diese jedoch deaktiviert und muss manuell über Bluetooth Classic mittels Parameter "COM Config" aktiviert werden.

COM Config.bit 0 = 0: WLAN-Schnittstelle deaktiviert COM Config.bit 0 = 1: WLAN-Schnittstelle aktiviert

	Index	Subindex	Default	Туре
COM Config	0x2005	1	0	Unsigned-16

9.2.1 Verbindungsdaten

Im Gerät können mit den Parametern "COM WLAN SSID 1/2" und "COM WLAN PW 1/2" die Verbindungsdaten von zwei Netzwerken abgespeichert werden. Ist das WLAN aktiviert, jedoch noch nicht verbunden, wird alternierend die einte oder andere Anmeldemöglichkeiten geprüft. Bei einer erfolgreichen Anmeldung und genügender Signalqualität bleibt die Verbindung dauerhaft bestehen.

	Index	Subindex	Default	Туре
COM WLAN SSID 1	0x2005	04	FLUXRON-82G	Visible-String-32
COM WLAN PW 1	0x2005	05	Flx8580*	Visible-String-32
COM WLAN SSID 2	0x2005	06	None	Visible-String-32
COM WLAN PW 2	0x2005	07	None	Visible-String-32

9.2.2 IP Adresse

Die notwendige IP-Adresse kann manuell über Bluetooth oder über ein im Netzwerk vorhandener DHCP-Server vorgegeben werden. Im Parameter "COM Config" kann die gewünschte Vergabeart konfiguriert werden.

COM Config.bit $3 = 0$:	IP-Adresse kann von einem DHCP-Server geschrieben werden
COM Config.bit $3 = 1(+8)$:	IP-Adresse muss manuell über Bluetooth geschrieben werden

	Index	Subindex	Default	Туре
COM Config	0x2005	01	0	Unsigned-16
COM IP address	0x2005	08	None	Unsigned-32

9.2.3 Datenaustausch im lokalen Netzwerk über Browser

Im Gerät ist ein Web-Server integriert der über eine konkrete IP-adresse oder über mDNS mit handelsüblichen Webbrowsern zugegriffen werden kann.

9.2.3.1 Webseitenansicht über IP-Adresse

Im Browser kann direkt die IP-Adresse, welche nach einer erfolgreichen WLAN-Verbindung im Gerät hinterlegt und über Bluetooth einsehbar ist, eingegeben werden.

	Index	Subindex	Default	Туре
COM IP address	0x2005	08	None	Unsigned-32

9.2.3.2 Webseitenansicht über mDNS

Ist die IP-Adresse unbekannt, können Windows basierend Systeme auch über die mDNS Funktionalität direkt auf den Webserver zugegriffen werden. Dazu muss im Adressfenster des Browser die die URL-Adresse <u>http://fluxron-induction-sernr.local/</u>, wobei der Text <u>sernr</u> durch die Seriennummer des Gerätes ersetzt werden muss, eingegeben werden.

Beispiel:

Seriennummer des Geräts gemäss Typenschild: URL-Adresse für den direkten Web-Server Aufruf: 13865 http://fluxron-induction-13865.local/

Enable mDNS
(http://fluxron-induction-sernr.local/
replace 'sernr' with the serial
number of your device

In der Standardkonfiguration ist diese Funktionalität jedoch deaktiviert und muss darum vor Gebrauch manuell über Bluetooth Classic mittels Parameter "COM Config" aktiviert werden.

COM	Config.bit 6 =	0:
COM	Config.bit 6 =	1(+64):

mDNS Funktionalität deaktiviert mDNS Funktionalität aktiviert

	Index	Subindex	Default	Туре
COM Config	0x2005	1	0	Unsigned-16

Falls der Webseiten Zugriff über mDNS aktiviert ist, kann das Gerät nur innerhalb von 30 Sekunden nach dem Aufstarten oder bei aktiverem Wiedereinschaltschutz (Warnung "P") über Bluetooth Classic verbunden werden.

9.2.4 Datenaustausch mit MQTT Cloud

Der Datenaustausch zu FLUXRON erfolgt über MQTT Cloud. Diese wird von FLUXRON Team für Ferndiagnose und Fernwartung genutzt.

In der Standardkonfiguration ist diese Funktionalität jedoch deaktiviert und muss darum vor Gebrauch manuell über Bluetooth Classic mittels Parameter "COM Config" aktiviert werden.

COM Config.bit $4 = 0$: COM Config.bit $4 = 1(+16)$:	MQTT Schnittstelle deaktiviert MQTT Schnittstelle aktiviert			
	Index	Subindex	Default	Туре
COM Config	0x2005	1	0	Unsigned-16

9.2.5 Datenaustausch mit OPC-UA Server (DIN-18898)

Grundsätzlich unterstützt das S-Class Induktionssystem einige Standardobjekte der Hersteller unabhängigen DIN 18898 Kommunikationsschnittstelle für Grossküchengeräte.

C-UA server	In der Standardkonfiguration ist diese Funktionalität jedoch deakti-
	viert und muss manuell vorab über Bluetooth Classic mittels Parame-
	ter "COM Config" aktiviert werden.

COM Config.bit 5 = 0: COM Config.bit 5 = 1(+32):

Enable OP

OPC-UA Schnittstelle deaktiviert OPC-UA Schnittstelle aktiviert

	Index	Subindex	Default	Туре
COM Config	0x2005	1	0	Unsigned-16

Falls der Datenaustausch zum OPC-UA Server aktiviert ist kann das Gerät nur innerhalb von 30 Sekunden nach dem Aufstarten oder bei aktiverem Wiedereinschaltschutz (Warnung "P") über Bluetooth verbunden werden.

9.3 Kommunikation über Bluetooth Low Energy

Die neusten S-Class Induktionssystemen sind optional mit einer Bluetooth Low Energy (BLE) Schnittstelle ausgestattet. Dies erlaubt den Datenaustausch zu BLE-fähigen Funkkochfühler zur kabelloser Temperaturefassung und deren Regelung. In der Standardkonfiguration ist diese jedoch deaktiviert

9.3.1 Aktivierung

Enable BLE (used for external sensors like MEATER and Ztove) Die BLE-Schnittstelle kann über den Parameter "COM Config" aktiviert werden.

COM Config.bit 1 = 0: COM Config.bit 1 = 1(+2): BLE-Schnittstelle deaktiviert BLE-Schnittstelle aktiviert

	Index	Subindex	Default	Туре
COM Config	0x2005	1	0	Unsigned-16

9.4 Kommunikation über CAN-Bus

Die FLUXRON Induktionssysteme sind mit einem CAN-Feldbus ausgerüstet. Das Komuinikationsprotokoll entspricht dem weit verbreitenten CANopen Protokoll gemäss EN 50325-4.

9.4.1 CAN-Busadresse

Am CAN-Bus kommunizieren die Teilnehmer als gleichwertig Partner. Jedem CAN-Bus Teilnehmer wird über den Parameter "CAN NodelD" eine eindeutige Adresse zwischen 1 – 127 zugewiesen.

CAN NodeID = 1:	Generator mit CAN-Busadresse 1 (werkseitige Einstellung)
CAN NodeID = 2:	Generator mit CAN-Busadresse 2

	Index	Subindex	Default	Туре
CAN NodelD	0x3033	5	1	Unsigned-8

Für die FLUXRON Spezialfunktionen (Master-Slave / Energieoptimierung übers Netzwerk) können maximal 8 Generatoren miteinander verbunden werden.

9.4.2 CAN-Busabschluss

Für eine zuverlässige Kommunikation benötigt der CAN Bus an beiden Enden einen Widerstand von 120 Ohm als Busabschluss. Bei den FLUXRON Induktionssystemen wird dieser Busabschluss per Software dazu oder weggeschaltet.

Beim Generator mit NodelD 1 und beim Interface mit NodelD 101 ist der Busabschluss aktiv. Wird die CAN Busadresse auf andere Werte gesetzt, wird der Busabschluss automatisch unterbrochen. Der CAN-Busabschluss kann auch direkt über den Parameter "CAN Config" aktiviert werden.

CAN Config.bit 0 = 0: Busabschluss 120 Ohm unterbrochen/deaktiviert CAN Config.bit 0 = 1: Busabschluss 120 Ohm aktiv

	Index	Subindex	Default	Туре
CAN Config	0x3033	1B	1	Unsigned-8

9.4.3 CAN-Bus Baudrate

Die CAN-Bus Baudrate beträgt bei den FLUXRON Induktionssystemen standardmässig 125 kHz. Die Baudrate kann jedoch über den Parameter "CAN Baudrate" an bestehende CAN Bus Systeme angepasst werden.

- 125: CAN-Bus Baudrate 125 kHz
- 250: CAN-Bus Baudrate 250 kHz
- 500: CAN-Bus Baudrate 500 kHz
- 1000: CAN-Bus Baudrate 1 MHz

	Index	Subindex	Default	Туре
CAN Baudrate	0x3033	17	125	Unsigned-16

9.5 Spulenkonfiguration

Die Generatoren können mit verschiedenen Grössen und Formen von Spulen betrieben werden. Für jede FLUXRON Spule sind vordefinierte, optimierte Parameter hinterlegt.

Überprüfen Sie den Spulentyp und schreiben Sie den entsprechenden Wert in "CoilSetup":

	Index	Subindex	Default	Туре
CoilSetup	0x2000	4	1	Unsigned-8

Achtung: Wenn der Parameter im "CoilSetup" verändert wird, werden automatisch folgende Parameter mit den jeweiligen Defaultwerten neu überschrieben:

	Index	Subindex	Default	Туре
Coil rated current	0x2000	6	56	Integer-16
Coil i2t value limit	0x2000	7	66	Integer-16
Coil i2t temp limit	0x2000	9	155	Integer-16
Coil sensor count	0x2000	5	1	Unsigned-8
FLX Frequency start	0x3035	4	19250	Unsigned-16
FLX Power max	0x3035	В	8000	Integer-16

FLX Coil curr pulse

FLX Power factor 100p	0x3035	24	200	Integer-16
FLX Power factor 25p	0x3035	25	20	Integer-16
FLX Power factor lim min	0x3035	26	75	Integer-16
FLX Config	0x3035	1	0	Unsigned-16
PAN Detect on limit	0x3037	7	40	Integer-16
PAN Detect off limit	0x3037	8	25	Integer-16
PAN Detection offset	0x3035	21	0	Integer-16
KMX Config	0x3028	E	1	Unsigned-8

9.6 Betriebsart

Induktionssysteme werden nach zwei Betriebsarten unterschieden

Punkt- und Ein-Zonen Flächeninduktion

Die Punktinduktion sowie die Ein-Zonen Flächeninduktion ist eine einzeln installierte Kochzone.

Beträgt der Abstand zwischen den Spulen mehr als 50 mm, so kann die Optimierungsfunktion "Single Zone" (siehe Kap. 0) genutzt werden.

Mehr-Zonen Flächeninduktion

Sind mehrere Ininduktionsheizsysteme direkt nebeneinander installiert, wird von einer Mehr-Zonen Flächeninduktion gesprochen.

Beträgt der Abstand zwischen den Zonen weniger als 50 mm, so kann die Optimierungsfunktion "Single Zone" (siehe Kap. 0) aus Pfeiffgeräuschgründen nicht genutzt werden.

Abstand der Spulen > 50 mm

Mit C- und S-Klasse möglich

Abstand der Spulen < 50 mm

Nur mit S-Klasse möglich

9.6.1 Automatische Frequenzoptimierung "SingleZone"

Hinweis: Die Selektion "SingleZone" ist nur bei der S-Klasse verfügbar. Die A- und die C-Klasse arbeiten immer im SingleZone Modus. Für Mehr-Zonen Flächeninduktion ist die C-Klasse ungeeignet.

SingleZone

Die Funktion "SingleZone" optimiert die ideale Arbeitsfrequenz für jeden Pfannentyp innert Bruchteilen von Sekunden. Somit wird immer die maximal mögliche Leistung für die verwendete Pfanne erreicht.

Verwendung bei Punkt- und Ein-Zonen Flächeninduktion

Die automatische Frequenzoptimierung kann in der FLX App mit der Option "SingleZone" aktiviert werden.

Für den indexierten Zugriff:

Bit 0 = 0: Bit 0 = 1:	"SingleZone" deaktiviert "SingleZone" aktiviert	"SingleZone" deaktiviert "SingleZone" aktiviert		
	Index	Subindex	Default	Туре
FLX Config	0x3035	1		

Ist die "SingleZone" aktiviert, wird die optimale Frequenz innerhalb eines angegebenen Frequenzbereichs verwendet. Dabei kann mittels dem Paramter "Anvanced Config" zwischen Standard und erweiterter Frequenzbereich umgeschaltet werden.

Advanced Config bit 0 = 0: Standard mit maximaler Betriebsfrequenz von 25 kHz Advanced Config bit 0 = 1 (+1): Erweiter Frequenzbereich mit max. Betriebsfrequenz von 50 kHz

	Index	Subindex	Default	Туре
Advanced Config	0x3035	2B	0	Unsigned-16

Die Arbeitsfrequenz kann mit in den Parametern "FLX Variable freq min" und "FLX Variable freq max" eingeschränkt werden:

17000 - 25000: minimale / maximale Betriebsfrequenz [Hz] (Standard)

17000 - 50000: minimale / maximale Betriebsfrequenz [Hz] (erweiter Frequenzbereich)

	Index	Subindex	Default	Туре
FLX Variable freq min	0x3035	1D	18500	Unsigned-32
FLX Variable freq max	0x3035	1E	24000	Unsigned-32

Die aktuelle Betriebsfrequenz kann ausgelesen werden.

	Index	Subindex	Default	Туре
FLX Frequency act	0x3035	20	-	Unsigned-32

9.6.2 Manuelle Frequenzoptimierung "MultipleZone"

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

Bei deaktivierter "SingleZone" arbeitet der Generator mit fester Arbeitfrequenz. Jede Spule einer Mehr-Zonen Flächeninduktion wird auf die gleiche Arbeitsfrequenz eingestellt.

Verwendung bei <u>Mehr-Zonen</u> Flächeninduktion

Werden mehrere Induktionsheizsysteme als Mehr-Zonen Flächeninduktion mit gleicher Arbeitsfrequenz betrieben, so darf der Abstand zwischen den Spulen minimal sein.

Für jeden Spulentyp ist als Arbeitsfrequenz ein Defaultwert hinterlegt. Dieser wird automatisch über den CoilSetup geladen.

Die Arbeitsfrequenz kann aber auch manuell an die vor Ort verwendeten Töpfe angepasst werden. Dazu wird die SingleZone kurzzeitig aktiviert und die optimale Arbeitsfrequenz bei maximaler Kochstufe mittels Parameter "FLX Frequency act" erfasst. Wichtig ist, dass diese Arbeitsfrequenz bei allen beteiligten Generatoren im Parameter "FLX Frequency start" hinterlegt und die SingleZone wieder deaktiviert wird.

19000 - 21500: Typische Betriebsfrequenzen [Hz]

	Index	Subindex	Default	Туре
FLX Frequency start	0x3035	04	19250	Unsigned-32
FLX Frequency act	0x3035	20	-	Unsigned-32

9.7 Power Management

9.7.1 Maximale Leistung

Die maximale Leistungsabgabe des Generators kann über den Parameter "Power max" eingestellt werden.

2000 - 9000: maximale Leistung des Generators [W]

	Index	Subindex	Default	Туре
Power max	0x3035	В	8000	Integer-16

9.7.2 Energiezähler

Die S-Class Induktionssysteme sind mit einem Energiezähler ausgestattet. Der abgegeben Energie seit der Erstinbetriebnahme des Induktionssystems wird erfasst.

Der Wert kann über die Parameter "ENG Counter kWh" ausgelesen werden.

	Index	Subindex	Default	Туре
ENG Counter kWh	0x2004	4	-	Unsigned-32

9.7.3 Energieplus – S0-Schnittstelle

Die S-Class Induktionssysteme sind mit einer S0-Schnittstelle für die Übertragung von Energieverbrauchs-Messwerten gemäss EN 62053-31 ausgestattet.

Pro Kilowattstunde werden an der OPT-Klemme 2+/2- die im Parameter "ENG Puls rate" definierte Anzahl von 24V-Spannungspulsen pro kWh ausgegeben. Die Länge des Spannungspulses kann über dem Parameter "ENG Puls length" definiert werden. Werkseitig ist die Pulslänge auf 30ms und die Anzahl der Pulse pro kWh auf 1000 eingestellt.

	Index	Subindex	Default	Туре
ENG Puls rate	0x2004	2	1000	Unsigned-16
ENG Puls length	0x2004	3	30	Unsigned-16

Zur Aktivierung der S0-Schnittstelle muss der Parameter "ENG Enable" auf "1" und gesetzt werden.

- 0: S0-Schnittstelle deaktiviert/ ausgeschaltet
- 1: S0-Schnittstelle aktiviert / eingeschaltet

	Index	Subindex	Default	Туре
ENG Enable	0x2004	1	0	Unsigned-8

Falls die ABCD-Schnittstelle aktiviert ist (Parameter PMG Enable =5), kann kein Energieimpuls ausgegeben werden.

9.7.4 Ein/Aus-Funktion über externen Kontakt

Mit einem externen potentialfreien Kontakt zwischen OPT 1- und OPT 1+ kann das Gerät ein oder Ausgeschaltet werden. Über den Parameter "PMG Enable" wird die Ein/Aus-Funktion konfiguriert. Dabei kann definiert werden, ob beim Schliessen oder Öffnen des Kontaktes das Gerät ein- oder ausgeschaltet wird:

- 0: Power Management deaktiviert / ausgeschaltet
- 2: Ausschalten wenn Kontakt geschlossen
- 4: Ausschalten wenn Kontakt offen

	Index	Subindex	Default	Туре
PMG Enable	0x2002	1	1	Unsigned-8

9.7.5 Leistungsreduktion über externen Kontakt

Mit einem externen potentialfreien Kontakt zwischen *OPT 1-* und *OPT 1+* kann die Leistungsreduktion aktiviert werden. Über den Parameter "PMG Enable" wird definiert, ob beim Schliessen oder Öffnen des Kontaktes die Leistungsreduktion aktiv wird: Dabei wird der voreingestellten Wert mit dem Wert des Parameter "PMG Reduction max" prozentual reduziert.

- 0: Power Management deaktiviert / ausgeschaltet
- 1: Leistungsreduktion wenn Kontakt geschlossen
- 3: Leistungsreduktion wenn Kontakt offen

Mit dem Parameter "PMG Reduction max" wird die maximale Leistungsreduktion in % angegeben. Ist das Power Management aktiviert, wird über den externen Kontakt die Leistung um die angegebenen % reduziert werden.

0 - 100 : Leistungsreduktion in %

	Index	Subindex	Default	Туре
PMG Enable	0x2002	1	1	Unsigned-8
PMG Reduction max	0x2002	2	33	Unsigned-16

9.7.6 Anschluss an Leistungsoptimierunganlage (nach DIN 18875)

Dank dem 4-poligen OPT-Interface kann der Generator über ein nach DIN 18875 spezifizierte 24V-Schnittstellenmodul direkt an eine Leistungsoptimierungsanlage (LOA) angeschlossen werden.

Die Leistung wird bei Bedarf um den voreingestellten Wert, welcher mit dem Parameter "PMG Reduction max" definiert wird, prozentual reduziert.

Die abcd-Signale werden direkt an die OPT-Interfaceklemmen des Generators angeschlossen:

Es können auch mehrere Generatoren am gleichen 24V–Schnitstellenmodul angeschlossen werden.

Zur Aktivierung der Energieoptimierung über die abcd-Schnittstelle muss der Parameter "**PMG Enable**" auf "5" gesetzt werden

- 0: Energieoptimierung deaktiviert / ausgeschaltet
- 5: Energieoptimierung über abcd-Schnittstelle aktiviert / eingeschaltet

	Index	Subindex	Default	Туре
PMG Enable	0x2002	1	1	Unsigned-8

9.7.7 Powermanagement im Geräteverbund

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

Die Funktion der Netzwerksummenleistung ermöglicht das Erfassen und Begrenzen der Summenleistung von bis zu 8 Generatoren. Somit können Energiebezugsoptimierungen realisiert und Stromanschlusskosten gespart werden. Die Energieoptimierung wird mit folgender Vorgehensweise konfiguriert:

- 1. Bei jedem Generator wird die Netzwerk Summenleistungsbegrenzung durch das Setzen des Parameters "PMG Network enable" auf "1" aktiviert
 - 0: Begrenzung der Netzwerk Summenleistung nicht aktiviert 1:
 - Begrenzung der Netzwerk Summenleistung aktiviert

	Index	Subindex	Default	Туре
PMG Network enable	0x2003	1	1	Unsigned-8

2. Jedem Generator wird eine unterschiedliche NodeID Nummer zwischen 1 bis 8 zugewiesen und diese im Parameter "CAN NodeID" hinterlegt. Ein Generator muss zwingend auf die ID Nummer 1 (Defaultwert) gesetzt werden. Bei Anwendungen mit Interface sind auch die Interface NodeID unterschiedlich und zwischen 101 und 108 zu zuweisen.

	Index	Subindex	Default	Туре
CAN NodelD	0x3033	5	1	Unsigned-8

Die maximale Summenleistung, welche im Verbund erreicht werden darf, wird jedem Generator über den Parameter "PMG Network pow max" mitgeteilt. Eine mehrstufige Reduzierung kann durch unterschiedliche Werte erreicht werden. Die Summenleistung wird in 100 Watt -Einheiten angegeben.

- 35: Begrenzung der Netzwerk Summenleistung auf 35 x 100W = 3.5kW
- 640: Begrenzung der Netzwerk Summenleistung auf 640 x 100W = 64kW (maximal)

	Index	Subindex	Default	Туре
PMG Network pow max	0x2003	4	240 (= 24kW)	Unsigned-16

3. Die maximale Reduktion kann bei jedem Generator einzeln über den Parameter "PMG Reduction max" in Prozent eingestellt werden.

	Index	Subindex	Default	Туре
PMG Reduction max	0x2002	2	33 (= 33%)	Unsigned-16

4. Beim CANBus benötigt an den Enden des Datenkabels jeweils ein Bussabschluss von 120 Ohm. Beim Generator mit NodeID 1 und beim Interface mit NodeID 101 ist jeweils der Busabschluss standardmässig aktiv. Darum sollte das Datenkabel beim Gernerator mit NodeID 1 beginnen. Endet das Datenkabel nicht beim Interface mit NodeID 101 muss der Busabschluss beim letzten Generator manuel aktiviert werden.

CAN Config.bit 0 = 0: Busabschluss 120 Ohm unterbrochen/deaktiviert CAN Config.bit 0 = 1: Busabschluss 120 Ohm aktiv

	Index	Subindex	Default	Туре
CAN Config	0x3033	1B	1	Unsigned-8

5. Die aktuelle Leistung die der Generator Verbraucht kann über den Paramter "PMG PowerActualOwn" ausgelesen werden.

	Index	Subindex	Default	Туре
PMG Power Actual Own	0x2003	2	Actual Power *100	Unsigned-16

6. Die aktuelle Leistung die der Gesamte Geräteverbund Verbraucht kann über den Paramter "PMG PowerActualSum" ausgelsen werden.

	Index	Subindex	Default	Туре
PMG Power Actual Sum	0x2003	3	Actual Power *100	Unsigned-16

7. Die aktuelle Leistungsaufnahme jedes einzelnen Geräts im Geräteverbund kann über die Prameter "PMG PowerAct1-8" ausgelsen werden.

	Index	Subindex	Default	Туре
PMG Power Act1-8	0x2003	5-0C	Actual Power *100	Unsigned-16

8. Der Status der einzelen Geräte im Geräteverbund kann über den Paramter "PMG Status Act1-8" ausgelsen werden.

	Index	Subindex	Default	Туре
PMG Status Act1-8	0x2003	16-1D	Actual Power *100	Unsigned-16

9. Der Status des Geräts kann über den Paramter "PMG Status ActualOwn" ausgelsen werden.

	Index	Subindex	Default	Туре
PMG Status ActualOwn	0x2003	1E	Actual Power *100	Unsigned-16

10. Der Status des gesamten Geräteverbunds kann über den Paramter, PMG Status ActualOr" ausgelesen werden. Mit diesem Parameter kann der gesamte Geräterverbund einfach überwacht werden.

	Index	Subindex	Default	Туре
PMG Status ActualOr	0x2003	1F	Actual Power *100	Unsigned-16

11. Der Energieverbrauch des gesamten Geräteverbunds kann über den Paramter, ENG Counter sum" ausgelesen werden.

	Index	Subindex	Default	Туре
ENG Counter sum	0x2004	06	Energy in Wh	Unsigned-32

Anwendungsbeispiel mit 8 Generatoren:

Da der Datenbus am Generator mit NodelD 8 endet, muss an diesem Generator der Busabschluss manuel aktiviert werden.

Anwendungsbeispiel mit 4 Generatoren und 4 Interfaces

Die Verdrahtung wird so ausgeführt, dass der Datenbus beim Generator mit NodelD 1 beginnt und beim Interface mit NodelD 101 endet. Somit sind die Busabschlüsse automatisch gesetzt.

Zur Unterstützung des Powermanagement im Geräteverbund wird der Einsatz von Memory-Sticks mit gespeicherten Parametern für NodelD's und Summenleistung empfohlen. Gerade im Servicefall können so die Geräte einfach ausgetauscht werden.

9.8 Warmhaltefunktion KeepWarm

Die Warmhaltefunktion regelt die Temperatur des Topfes auf Basis einer Temperaturschätzung. Als Grundlage nutzt das System dasTemperaturverhalten des Spulensensors unter dem CERAN-Glas. Die Warmhaltefunktion kann über den Parameter "KWF Enable" oder direkt über die APP aktiviert/deaktiviert werden.

0: 1:	KeepWarm deaktiviert KeepWarm aktiviert			KeepW	arm 🗸	
		Index	Subindex	Default	Туре	J
KWF Enable		0x2001	1	0	Unsigned-8	1

Im Warmhaltemodus zeigt das Display nach dem Einschalten folgende Symbolik:

Anzeige	Status
_	Eingestellte Temperatur noch nicht erreicht - heizt
-	Eingestellte Temperatur erreicht – hält Temperatur
	Eingestellte Temperatur überschritten – heizt nicht

Mit dem Parameter "KWF Max power" wird die maximale Leistung im Warmhaltemodus dem dynamischen Verhalten des Systems angepasst.. Standardmässig sind 1600W für 3.5kW Geräte sowie 2000W für 5 und 8kW Geräte eingestellt.

0 - 2000:	maximale Leistung in Watt
-----------	---------------------------

	Index	Subindex	Default	Туре
KWF Max power	0x2001	2	2000	Unsigned-16

Mit dem Parameter "KWF Temp offset" kann der Offset in °C eingestellt werden. Dieser wird zum eingestellten Sollwert addiert.

	Index	Subindex	Default	Туре
KWF Temp offset	0x2001	9	5	Integer-8

Für die Sollwertvorgabe stehen zwei Temperaturbereiche zur Verfügung, welche über die Parameter "FLX Config" oder direkt über die APP selektiert werden können.

Bit 12 = 0: Bit 12 = 1 (+4096)	Femperaturbereic Femperaturbereic	h 45°C to 115°C h 45°C to 205°C	KeepWa	rm high range
	Index	Subindex	Default	Туре
FLX Config	0x3035	1		UNSIGNED-16

Grundsätzlich stehen dem Anwender zwei Möglichkeirten zur Temperaturvorwahl zur Verfügung

Die Konfiguration kann über den Parameter "FLX Config" oder direkt über die APP selektiert werden

Bit 13 = 0: Temperaturvorgabe über aktuelle Knebelposition

Bit 13 = 1 (+8192) Temperaturvorgabe durch Einschalten mittels Linksdrehung

	Index	Subindex	Default	Туре
FLX Config	0x3035	1		UNSIGNED-16

9.8.1 Temperaturvorgabe durch Einschaltung mittels Linksdrehung

Wird die "KWF anticlockwise " Bit im Parameter "FLX Config" aktiviert, entscheidet bei Einschalten des Knebel die Drehrichtung, ob das Gerät im Warmhalte- oder die Kochstufenmodus arbeitet. Wird das Gerät mit einer minimalen Linksdrehung am Knebel eingeschaltet arbeitet das Gerät mit der kleinsten Temperaturvorgabe im Warmhaltemodus. Wird das Gerät mit einer minimalen Rechtsdrehung am Knebel eingeschaltet arbeitet das Gerät mit auf der kleinsten Kochstufe

Zur Umschaltung zwischen Warmhalte- und Kochstufenmodus muss der Knebel kurzzeitig in der Nullstellung verharren. Beim direktem Überdrehen der Nullposition findet keine Umschaltung statt.

9.8.2 Temperaturvorgabe über absolute Knebelposition

Damit Gerät sowohl im Kochstufen- als auch im Warmhaltemodus benutzt werden kann, wird die Knebelauswertung in Winkelbereiche aufgeteilt werden. Im unteren Drittel der Knebelpositionen befindet sich das Gerät im Einstellbereich der Warmhaltefunktion, in den oberen zwei Drittel arbeitet das Gerät dann wieder im Kochstufenmodus.

Über den Parameter "FLX Config" oder direkt über die APP kann die Die Temperaturvorgabe über die absolute Knebelposition auch so konfiguriert werden, dass nur die Warmhaltung, dafür aber über den ganzen Knebelbereich skaliert, angewählt werden kann.

Bit 7 = 0: Bit 7 = 1 (+128)	Winkelbereich für Warmhaltung Winkelbereich für Warmhaltung	30° bis 120° 30° bis 330°	 KeepWarm full range
		<u>.</u>	

	Index	Subindex	Default	Туре
FLX Config	0x3035	1	0	UNSIGNED-16

Nach einem Versorgungsunterbruch mit noch eingeschaltetem Knebel (mit oder ohne Wiedereinschaltschutz "P") arbeitet das Gerät nach Temperaturvorgabe über absolute Knebelposition.

9.9 PowerShift

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

Die PowerShift Funktion kann je nach verwendetem Spulentyp für folgende Zwecke eingesetzt werden:

- Leistungssteuerung übers Schieben des Topfes
- Reduzierung des Elektrosmog bei kleinen oder nicht im Spulenzentrum aufgesetzten Töpfen
- Konstante Leistungsaufnahme beim Einsatz von ein oder mehreren Töpfen auf der Kochfeld

Im Powershift Modus wird anhand der Platzierung des Topfes zusätzlich die Leistung reduziert. Der Leistungsfaktor ist am grössten, wenn der Topf ins Zentrum der Kochzone gesetzt wird. Der relevante "Powerfactor" ist am grössten, wenn von der Induktionsspule möglichst viel durch den Topf abgedeckt wird. Je weniger Abdeckung desto kleiner der Powerfactor.

Zur Konfiguration werden zwei Arbeitspunkte der gewünschten Leistungskurve definiert. Damit kann die gewünschte Leistungskurve optimal eingestellt werden.

Mit dem Parameter "FLX Pf 25p" wird der Arbeitspunkt angegeben, an welchem 25% Leistung abgegeben wird. Mit dem Parameter "FLX Pf 100p" wird der Arbeitspunkt angegeben, über welchem immer 100% Leistung abgegeben wird.

Mit dem Parameter "FLX Pf lim" wird die minimale Leistung in % angegeben, welche im Powershift Modus nicht unterschritten wird.

	Index	Subindex	Default	Туре
FLX Power factor 100p	0x3035	24	200	Integer-16
FLX Power factor 25p	0x3035	25	20	Integer-16
FLX Power factor lim min	0x3035	26	75	Integer-16

9.10 Booster-Charakteristik

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

Die Induktionsgeräte sind auf hohe Dauerleistung ausgelegt. Die Kochstufenvorgabe steuert die quadratische Leistungsabgabe.

Durch Konfiguration einer Booster-Charakterisik kann die Leistungsabgabe in den unteren Kochstufen noch mehr reduziert werden ohne in den höchsten Kochstufen auf die maximale Leistungsabgabe zu verzichten.

Mit dem Parameter "FLX Power curve 100p" kann der Booster Aktivierungslevel definiert werden. Mit dem Parameter "FLX Power curve reduction kann die maximale Leistungsabgabe kurz vor Aktivierung des Boosters abgesenkt werden

Die Grafik zeigt eine Konfiguration, wo ab Kochstufe 9/98% der Booster aktiv wird.

Parameter "FLX Power curve reduction"

0 – 99%:	Maximale Leistungsabgabe vor Aktivierung des Boosters
100%:	Keine Leistungsabsenkung / keine Booster Charakteristik

Parameter "FLX Power curve 100p" kann

0:	
1-254:	
255:	

Booster (volle Leistung) nach dem Einschalten sofort aktiv Booster Aktivierungslevel (Kochstufenvorgabe 1-9 / 1-100%) Booster kann nicht aktiviert warden.

	Index	Subindex	Default	Туре
FLX Power curve reduction	0x3035	2F	100	Integer-16
FLX Power curve 100p	0x3035	30	250	Integer-16

9.11 Wahl der Temperaturfühler

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

An den Klemmen SENS1 – SENS4 können sowohl PT100 aber auch PT920 und PT1000–Fühler ausgewertet werden

Mit dem Parameter "KMX Config" kann die Auswertung wie folgt konfiguriert werden.

0: An den SENS-Klemmen werden ein bis vier PT1000 Fühler ausgewertet

P [%] [0..100%]

- 1: An den SENS-Klemmen werden ein bis vier PT100 Fühler ausgewertet
- 2: An den SENS-Klemmen werden ein bis vier PT920 Fühler ausgewertet

	Index	Subindex	Default	Туре
KMX Config	0x3028	E	1	Unsigned-8

9.12 Topferkennung

Mit der Topferkennung wird entschieden, ob der Generator Leistung abgeben darf. Liegt der aktuelle Wert des Topfes *"PAN Detect act"* **über** dem Wert, welcher im Parameter *"PAN Detect on limit"* definiert ist, gibt der Generator Leistung ab. Ist der aktuelle Wert kleiner, so wird der Topf nicht erkannt und keine Leistung abgegeben. Fällt der aktuelle Wert **unter** den im Parameter *"PAN Detect off limit"* definierten Wert, wird die Leistungszufuhr gestoppt.

"PAN Detect act"

Zeigt den aktuellen TopferkennungswWert an.

	Index	Subindex	Default	Туре
PAN Detect act	0x3037	9	-	Integer-16

"PAN Detect on limit"

Wert, ab dem ein Verbraucher erkannt wird (Leistung wird abgegeben)

	Index	Subindex	Default	Туре
PAN Detect on limit	0x3037	7	40	Integer-16

"PAN Detect off limit"

Wert, ab dem die Leistungszufuhr gestoppt wird

	Index	Subindex	Default	Туре
PAN Detect off limit	0x3037	8	25	Integer-16

Mit der Topferkennung wird entschieden, ob der Generator Leistung abgeben darf.

Liegt der aktuelle Wert des Topfes *"BAX Psc value"* unter dem Wert, welcher im Parameter *"BAX Scan Pan Psc"* definiert ist, gibt der Generator Leistung ab. Ist der aktuelle Wert grösser, so wird der Topf nicht erkannt und keine Leistung abgegeben. Steigt der aktuelle Wert **über** den im Parameter *"BAX Lift Pan Psc"* definierten Wert, wird die Leistungszufuhr gestoppt.

Wichtig:

Die Werte werden nur aktualisiert und angezeigt, wenn der Knebel in "**0-Position"** ist. Wenn die Topferkennung neu eingestellt werden soll, wird der Knebel auf die "**0-Position"** gedreht und die gewünschten Werte geändert. Nach 5 Sekunden werden die Änderungen wirksam.

"BAX Psc value":

Zeigt den aktuellen Topferkennungs-Wert an.

	Index	Subindex	Default	Туре
BAX Psc	0x3030	С	-	

"BAX Scan Pan Psc" :

Wert, ab dem ein Verbraucher erkannt wird (Leistung wird abgegeben)

	Index	Subindex	Default	Туре
BAX Scan Pan Psc (230V/3.5kW)	0x3031	4	12	
BAX Scan Pan Psc (400V/5kW)	0x3031	4	403	

"BAX Lift Pan Psc" : Wert, ab dem die Leistungszufuhr gestoppt wird

	Index	Subindex	Default	Туре
BAX Lift Pan Psc (230V/3.5kW)	0x3031	6	220	
BAX Lift Pan Psc (400V/5kW)	0x3031	6	670	

9.13 7-Segmentanzeige

Die 7-Segmentanzeige kann für verschiedene Anwendungen über Parameter, 7SEG Config" anwenderspezifisch konfiguriert werden.

9.13.1 Einstellung mittels FLUXRON APP

Bei Aktivierung von **Multi digit display** wird die gewählte Kochstufe anstatt von 0-9 von 0-100 Prozent und bei Temperaturregelung anstatt das Lauflicht der Temperatursollwert in °C dargestellt.

Wird **Power act / Power max** aktiviert, erscheint auf dem Display die Leistungsabgabe in 10%-Schritten (0-9) oder in exakten Prozentwerten (0-100) der Maximalleistung oder bei Temperaturregelung die Isttemperatur in °C.

Bei Aktivierung von **Show reference and actual** wird bei Veränderung der Vorgabe sofort von Ist- auf Sollwertanzeige umgeschaltet. Vier Sekunden nach letzter Veränderung wird automatisch wieder der Istwert (Kochstufe oder Temperatur) dargestellt

Wird **Flip display** aktiviert, wird der Anzeigewert kopfüber, das heisst um 180° gedreht dargestellt.

Ebenfalls wird unterschieden, ob die Anzeige als ein-, zwei-, dreioder vierstellig dargestellt werden soll.

9.13.2 Einstellung mittels FLXaccess oder CAN-Bus

Über den Parameter, 7SEG Config" kann die Anzeige auch wie folgt direkt konfiguriert werden:

Einstellige 7-Segmentanzeige

- 0: Anzeige der Leistungsstufe von 1 bis 9
- 1: Anzeige der Leistungsstufe von 1 bis 9; Display um 180° gedreht
- 4: Anzeige von P/Pmax in 10-Prozent Schritten (0-9)
- 5: Anzeige von P/Pmax in 10-Prozent Schritten (0-9); Display um 180° gedreht
- 8: Wechselanzeige Leistungsstufe und P/Pmax 10-Prozent Schritten (0-9)
- 9: Wechselanzeige Leistungsstufe und P/Pmax 10-Prozent Schritten; Display um 180° gedreht

Vierstellige 7-Segmentanzeige

- 50: Anzeige des Sollwertes in % oder °C
- 51: Anzeige des Sollwertes in % oder °C; Display um 180° gedreht
- 54: Anzeige von Istwert in % oder °C
- 55: Anzeige von Istwert in % oder °C; Display um 180° gedreht
- 58: Wechselanzeige von Soll- und Istwert in % oder °C
- 59: Wechselanzeige von Soll- und Istwert in % oder °C; Display um 180° gedreht

Zusätzliche Optionen

- Bit 6 (+64): Im Slave Modus (Master controlled) wird die Anzeige mit einem A für Automatk übersteuert
- Bit 7 (+128): Leistungsstufe wird auch bei vierziffriger Anzeige einstellig (1-9) angezeigt

Index Subindex Default Type

7SEG Config	0x2000	2	0	Unsigned-8

9.14 Warnlampen Signal

Die S-Class Induktionssysteme sind zum Anschluss einer +24V - Warnlampe konfigurierbar.

Die Warnlampe leuchtet, wenn das Kochfeld eingeschaltet, die Restwärme noch hoch oder das Induktionssystem eine Fehlermeldung aktiv ist.

Die Funktionalität Warnlampe kann über den Parameter "Advanced Config" aktiviert /deaktiviert werden.

Advanced Config bit 1 = 0: Advanced Config bit 1 = 1 (+2): Warnlampen-Signal deaktiviert Warnlampen-Signal aktiviert

	Index	Subindex	Default	Туре
Advanced Config	0x3035	2B	0	Unsigned-16

Falls die ABCD-Schnittstelle (Parameter PMG Enable =5) oder der Ausgabe des Energieimpulss aktiviert ist, kann kein Warnlampen-Signal ausgegeben werden.

9.15 Master-Slave Betrieb

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

Mit dem Master-Slave Modus können mittels nur einem Bedienelement mehrere Generatoren betrieben werden. Dabei stehen zwei verschiedene Aktivierungsmethoden zur Verfügung

a) Aktivierung über Software durch Servicetechniker mittels Parameter "FLX Config"

Master control

b) Aktivierung über Schaltkontakt durch Anwender mittels Parameter "PMG Enable"

Folgende Einstellungen sind vorzunehmen:

1. Dem Master-Generator muss die Node ID =1 und jedem Slave-Generator eine eigene Node ID zwischen 2 und 8 zugewiesen werden.

	Index	Subindex	Default	Туре
CAN NodeID	0x3033	5	1	Unsigned-8

- 2. Wahl der Aktivierungsmethode, Dauerhaft über Konfiguration (a) oder Anwender spezifisch über Schaltkontakt (b)
- a) Über die Konfiguration kann bei jedem **Slave**-Generator der Master Control Mode mittels Parameter "FLX Config" aktiviert werden.

FLX Config bit $6 = 0$: Steuerung erfolgt nicht über den Master					
FLX Config bit $6 = 1$ (+64): Steuerung erfolgt uber den Master					
	Index	Subindex	Default	Туре	
FLX Config	0x3035	1	0	Unsigned-16	

 b) Über einen externen potentialfreien Kontakt zwischen OPT 1- und OPT 1+ kann bei jedem
 Slave-Generator der Master Control Mode aktiviert werden. Vorgängig muss der Parameter "PMG Enable" auf 6 oder 7 gesetzt werden.

PMG Enable = 0	Power Management deaktiviert / ausgeschaltet				
PMG Enable = 6	Master Control aktiv, wenn Kontakt offen				
PMG Enable = 7	Master Control aktiv, wenn Kontakt geschlossen				
	Index Subindex Default Type				
PMG Enable	0x2002	1	1	Unsigned-8	

3. Je nach Konfiguration beim **Master**-Generator kann dieser seinen Sollwert (Knebelposition) oder seine Stellgrösse als Vorgabe an den Slave übertragen.

CAN Config bit 1 = 0:	Master s	Master sendet seine Sollwertvorgabe (Knebelposition)				
CAN Config bit $1 = 1$ (·	+2): Master s	: Master sendet seine Stellgrösse (aktuelle Heizleistung)				
	Index	Subindex	Default	Туре		
CAN Config	0x3033	1B	1	Unsigned-8		

4. Mittels CAN Kabel können bis maximal 8 Generatoren miteinander verbinden:

9.16 Multiplexer Mode

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

Der Multiplexer bietet sich als Erweiterung für die Ansteuerung von mehreren Spulen mit einem S-Klasse Generator für Subzonen-Regelung an. Es können zwei Spulen am externen Multiplexer angeschlossen werden. Sowohl für den Temperatur Controller Zone A (TCOA) als auch für Zone B (TCOB) sind eigene Parameter vorhanden. Somit sind verschiedene Temperaturprofile für die jeweiligen Spulen A und B realisierbar.

Mit dem Parameter "MUX Enable" kann die Funktion aktiviert sowie konfiguriert werden.

MUX Enable Bit 0 = 0:	Multiplexer deaktiviert
MUX Enable Bit 0 = 1(+1):	Multiplexer aktiviert
MUX Enable Bit 1 = 0:	Multiplexer im Generator eingebaut
MUX Enable Bit 1 = 1(+2):	Externes Multiplexer Modul angeschlossen
MUX Enable Bit 2 = 0:	Multiplexerbetrieb mit fixem Duty Cycle
MUX Enable Bit 2 = 1(+4):	Multiplexerbetrieb mit dynamischen Duty Cycle
MUX Enable Bit 3 = 0:	Einfach 4-Segmentanzeige (mit Displayumschaltung
MUX Enable Bit 3 = 1(+8):	Zweifach 3-Segmentanzeige (ohne Display-Umschaltung)
MUX Enable Bit 4 = 0:	Lauflichtanzeige für Temperaturregelung nicht ausgeblendet
MUX Enable Bit 4 = 1(+16):	Lauflichtanzeige für Temperaturregelung ausgeblendet
	Index Subindex Default Type

	Index	Subindex	Default	Туре
MUX Enable	0x303B	1	0	Unsigned-8

Mit dem Parameter "MUX PeriodTime" wird die Periodenzeit bzw. die Umschaltzeit eingestellt. Soll die Umschaltzeit zB. 10 Sekunden betragen, muss der Wert 100 eingetragen werden.

100 - 600: periodTime [$\frac{1}{10}$ sec]

	Index	Subindex	Default	Туре
MUX PeriodTime	0x303B	3	100 (=10s)	Unsigned-16

Mit dem Parameter "MUX SwitchTime" wird festgelegt, wie lange die Zeit zwischen dem Umschalten der beiden Spulen ist. Dieser Parameter sollte nur dann verändert werden, wenn mit einem separaten, externen Schütz gearbeitet wird.

-	Index	Subindex	Default	Туре
MUX SwitchTime	0x303B	4	1 (=0.1s)	Unsigned-16

Ist "Multiplexer mit fixem Duty Cycle" aktiviert, wird mit dem Parameter "MUX DutyCycle" festgelegt, im welches Verhältnis das Umschalten der beiden Spulen stattfindet.

	Index	Subindex	Default	Туре
MUX DutyCycle	0x303B	6	50 (=50%)	Unsigned-8

Ist "Multiplexer mit dynamischen Duty Cycle" aktiviert, verändert sich der Duty Cycle zwischen dem Minimal- "MUX DynDutyCycle min" und Maximalwert "MUX DynDutyCycle max" gemäss der benötigten Leistungsverteilung. Bei gleiche Leistungsabgabe auf beiden Spulen pendelt sich Duty Cycle "MUX DynDutyCycle act" bei 50% ein.

	Index	Subindex	Default	Туре
MUX DynDutyCycle act	0x303B	8	-	Unsigned-8
MUX DynDutyCycle min	0x303B	9	5 (=5%)	Unsigned-8
MUX DynDutyCycle max	0x303B	А	95 (=95%)	Unsigned-8

Die Sollwert kann für beide Spulen sowohl gemeinsam oder getrennt vorgegeben werden.

TCOA /TCOB Config bit 5 = 0:

Gemeinsame Sollwertvorgabe über KnobA oder KnobB, oder beide gleichzeitig als doppelseitige Bedienung

TCOA /TCOB Config bit 5 = 1 (+32):

Separate Sollwertvorgabe über KnobA für Kanal A KnobB für Kanal B

	Index	Subindex	Default	Туре
TCOA Config	0x3039	2	0	Unsinged-8
TCOB Config	0x303A	2	0	Unsinged-8

9.16.1 Anschlussschema für Einzelgenerator

9.16.2 Anschlussschema für Doppelgenerator

heatingxcooking

9.16.3 Anschluss Signal-Kabel

9.17 Temperaturregelung

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

V Temperature control

Die Temperaturregelung kann im Parameter "FLX Config" aktiviert werden. Die 7-Segmentanzeige wechselt auf eine Temperatur-Sollwertvorgabe.

FLX Config.bit5 = 0: FLX Config.bit5 = 1 (+32): "Temperature control" deaktiviert "Temperature control" aktiviert

	Index	Subindex	Default	Туре
FLX Config	0x3035	1	0	Unsigned-16

9.17.1 Selektion der Istwert Temperaturerfassung

Zur Bestimmung des aktuellen Temperatur Istwertes können sowohl Messwerte als auch Schätzwerte genutzt werden.

9.17.1.1 Selektion der Messwerte

Die verschienden Messwerte können über den Parameter "TCOA/B TSelector" selektiert werden

- 0: PT100-Kabelfühler am SENS2-Eingang (mit Multiplexr auch am SENS4-Eingang)
- 1-4: Funkfühler mit ID 1-4 über Optionsmodul Bluetooth 4.0
- 5: Infrarotsensor (Pyrometer) über Optionsmodul I/O-Erweiterung an X3
- 6: Thermoelent (Typ K) über Optionsmodul I/O-Erweiterung an X9.3

	Index	Subindex	Default	Туре
TCOA TSelector	0x3039	20	0	Unsigned-8
TCOB TSelector	0x303A	20	0	Unsigned-8

Messwerterfassung über PT100-Kabelfühler

Wird die Messung des Temperatur Istwertes über ein Applikationssensor vom Type PT100-Kabelfühler realisiert, wird dieser am SENS 2 angeschlossen. Falls gleichzeitig auch ein Multiplexer verwendet wird, kann der zweite Applikationsfühler (Kanal B) an SENS 4 angeschlossen werden.

Messwerterfassung über I/O-Erweiterung (Optional)

Mit dem Optionsmodul I/O-Erweiterung können über die I2C-Schnittstelle zusätzliche Aktoren und Sensoren mit dem Generator verbunden werden. Unter anderem erlaubt es die Erfassung des Temperaturistwertes über Infrarotsensoren (berührungslos) und über Thermoelemente (bis 999°C) zu realisieren.

Messwerterfassung über Funkfühler (Optional)

FLUXRON zertifizierte Funkfühler können über das Optionsmodul Bluetooth 4.0 eingelesen und deren Temperaturmesswerte als Istwert der Temperaturregelung zugeführt werden.

9.17.1.2 Schätzung des Istwert über Modellrechnung

Dank der modelbasierten Berechnung kann eine Temperaturregelung auch ohne zusätlichen Applikationsfühler realisiert werden. Dabei läuft im Hintergrund ein mathematisches Model zur Schätzung der Isttemperatur im Topf, welche dann als Istwert der Temperaturregelung zugeführt wird.

Die Umschaltung vom realien Istwert zum geschätzten Istwert erfolgt über den Parameter TCOA/B Config

TCOA /TCOB Config bit 6 = 0: TCOA /TCOB Config bit 6 = 1 (+64): Messwert über realen Fühler gemäs TSelector Messwert über Modelrechnung (Schätzer)

heatingxcooking

	Index	Subindex	Default	Туре
TCOA Config	0x3039	2	0	Unsinged-8
TCOB Config	0x303A	2	0	Unsinged-8

Die Füllmenge im Topf beeinflusst die Schätzung, im Speziellen das Einschwingverhalten zum Erreichen des Sollwertes. Darum kann die durchschnittliche verwendete Füllmenge leicht angepasst und mittels Parameter TCOA/B Observer Config konfiguriert werden.

TCOA/B Observer Config = 0:Schätzung mit Füllmenge von 0.2 kg (0.2 dl Wasser)TCOA/B Observer Config = 1:Schätzung mit Füllmenge von 0.8 kg (0.8 dl Wasser)TCOA/B Observer Config = 2:Schätzung mit Füllmenge von 2 kg (2 l Wasser)TCOA/B Observer Config = 3:Schätzung mit Füllmenge von 5 kg (5 l Wasser)

	Index	Subindex	Default	Туре
TCOA Observer config	0x3039	22	0	Unsinged-8
TCOB Observer config	0x303A	22	0	Unsinged-8

Die geschätzte Temperatur in der Pfanne kann mittels Parameter TCOA/B Temp pan observed ausgelesen werden

	Index	Subindex	Default	Туре
TCOA Temp pan observed	0x3039	24	0	Integer-16
TCOB Temp pan observed	0x303A	24	0	Integer-16

Die Nutzung der Schätzwerte kann als zwingend oder auch als Alternative zu den Messwerten konfiguriert werden. Dabei wird beim Einschalten die Existenz des Applikationsfühler geprüft. Ohne gültige Messwerte wird dann automatisch auf die Istwertschätzung zurückgegriffen.

Application sensor auto detection

TCOA /TCOB Config.bit 2 = 0: TCOA /TCOB Config.bit 2 = 1 (+4):

Die automatische Erkennung des Applikationsfühlers kann im Parameter "TCOA/B Config" aktiviert werden.

Bei fehlendem Sensor wird immer Fehler 22 angezeigt Bei fehlendem Sensor wird im Betrieb Fehler 22 angezeigt, beim Einschalten jedoch automatisch den Schätzwert zurückgegriffen und darum kein Fehler 22 mehr ausgegeben.

	Index	Subindex	Default	Туре
TCOA Control	0x3039	3	0	Unsigned-16
TCOB Control	0x303A	3	0	Unsigned-16

9.17.2 Aufheizsignal

Ist die absolute Differenz zwischen Ist- und Solltemperatur grösser als der im Parameter "TCOA/B TReached" definierte Toleranzwert, kann an den OPT-Klemmen 2+ und 2- ein 24V-Signal ausgeben werden.

	Index	Subindex	Default	Туре
TCOA TReached	0x3039	10	25 (= +/- 2.5°C)	Interger-16
TCOB TReached	0x303A	10	25 (= +/- 2.5°C)	Interger-16

Die Signalausgabe zur Aufheizphase muss jedoch über das TCOA/B Config aktiviert werden.

TCOA /TCOB Config bit 4 = 0: TCOA /TCOB Config bit 4 = 1 (+16): Digitalsignal Aufheizphase deaktiviert Digitalsignal Aufheizphase aktiviert

	Index	Subindex	Default	Туре
TCOA Config	0x3039	2	0	Unsinged-8
TCOB Config	0x303A	2	0	Unsinged-8

Falls die ABCD-Schnittstelle (Parameter PMG Enable =5), der Energiepuls (Parameter ENG Enable =1) oder der Multiplexer (Parameter MUX Enable =3) aktiviert sind, kann das Aufheizsignal nicht ausgegeben werden.

9.17.3 Anzeige im Temperaturregelung

Bei aktiver Temperaturregelung wird im linken Ziffernsegement ein Bargraph dargestellt. In den restlichen Ziffernsegmente, falls vorhanden, wird in der Standardkonfiguration der Sollwert in °C angezeigt.

Vierstellige 7-Segmentanzeige

=

Einstellige 7-Segmentanzeige

Leuchten alle drei horizontalen Striche des Bargraphs gleichmässig auf ist die Isttemperatur im gewünschten Zielfenster welche über den Parameter "TCOA/B TReached" beschrieben

	Index	Subindex	Default	Туре
TCOA TReached	0x3039	10	25 (= +/- 2.5°C)	Interger-16
TCOB TReached	0x303A	10	25 (= +/- 2.5°C)	Interger-16

Bildet der Bargraph ein Lauflicht von unten nach oben ab, liegt die Istemperatur noch unter den Zielwerten. Bildet der Bargraph ein Lauflicht von oben nach unten ab, liegt die Istemperatur noch über den Zielwerten

Zeigt der Bargraph bei den einzelnen Segmenten einen Doppelblitz basiert die Istwerterfassung auf einem realen Messswert des Applikationsfühlers. Bei Einzelblitzen basiert die Istwerterfassung auf einem Schätzwert.

Wird kein Bargraph angezeigt, arbeitet das Gerät im Kochstufensteuerung.

9.17.4 Automatische Deaktivierung Temperaturregelung

Zur automatischen Deaktivierung der Temperaturregelung (Automatiche Aktivierung der Kochstufensteuerung) stehen zwei Varianten zur Auswahl.

Automatische Deaktivierung der Temperaturreglung über Detektion des Applikationsfühler Automatische Deaktivierung der Temperaturregelung abhängig von der Sollwertvorgabe

9.17.4.1 Deaktivierung Temperaturregelung über Detektion des Applikationssensor

Je nach Konfiguration kann die Temperaturregelung bei fehlendem Applikationsfühler automatisch auf Kochstufensteuerung umschalten oder einen Applikationsfühlerunterbruch (ERROR 22) ausgeben. Die automatische Umschaltung auf Kochstufensteuerung kann wie folgt konfiguriert werden:

Die automatische Erkennung des Applikationsfühlers kann im Parameter "TCOA/B Config" aktiviert werden.

TCOA /TCOB	Config.bit $2 = 0$):
TCOA /TCOB	Config.bit $2 = 1$	l (+4):

Bei fehlendem Sensor wird immer Fehler 22 angezeigt Bei fehlendem Sensor wird im Betrieb Fehler 22 angezeigt, beim Einschalten jedoch automatisch die Kochstufensteurung aktiviert, und darum kein Fehler 22 ausgegeben.

	Index	Subindex	Default	Туре
TCOA Control	0x3039	3	0	Unsigned-16
TCOB Control	0x303A	3	0	Unsigned-16

Ist also die automatische Umschaltung aktiviert, wird der Applikationsfühler somit nur im Betrieb überwacht. Wird nun im Betrieb der Applikationsfühler entfernt, wird ein Applikationsfühlerfehler (ERROR 22) solange ausgeben, bis der Knebel kurz aus- und wieder eingeschaltet wird. Anschliessend verschwindet der Fehler und das Gerät kann wieder normal in der Kochstufensteuerung weiter betrieben werden.

Nutzt die Temperaturregelung einen geschätzten Istwert (TCOA /TCOB Config bit 6 = 1), kann nicht automatisch zwischen Temperaturregelung und Kochstufensteuerung umgeschaltet werden.

9.17.4.2 Deaktivierung Temperaturregelung über Sollwertvorgabe (Knebelstellung)

Je nach Konfiguration kann die Temperaturregelung überhalb einer definierten Knebelstellung deaktiviert und automatisch auf Kochstufensteuerung umgeschaltet werden. Über den Parameter "TCOA/B PowLevel active" wird der Schwellenwert der Umschaltung definiert.

0:Die Temperaturregelung kann über die Knebelstellung nicht deaktiviert werden.0 < x < 255:</td>Bei Powerlevel-Vorgabe grösser x wird die auf Kochstufensteuerung umgeschaltet255:Trotz Temperaturregelungsmodus arbeitet das Gerät stets im Kochstufenmodus

	Index	Subindex	Default	Туре
TCOA PowLevel active	0x3039	1B	0	Unsigned-8
TCOB PowLevel active	0x303A	1B	0	Unsigned-8

9.17.5 Mehrspulige Temperaturregelung

Mit der Master-Slave - Funktion können mehrere Spulen über **einen** Knebel im Temperaturregelmodus arbeiten. Dabei gibt es zwei verschiedene Konfigurationen zu unterscheiden.

Temperaturregelung mit Mehrkreisspulen (Bsp. Geregelter Hochleistungs-Induktionskocher) Temperaturregelung für Subzonen (Bsp. Induktions-Tepanyaki)

Bei der **Temperaturregelung mit Mehrkreisspulen** befindet der Master im Temperaturregelmodus und die Slaves im Kochstufenmodus. Der Applikationsfühler für die Istwerterfassung der Temperatur ist nur beim Master (SENS 2) angeschlossen. Alle Slaves erhalten über den CAN-Bus vom Master die von der Regelung vorgegebene Stellgrösse. Somit haben alle Slaves bei gleichmässiger Spulenabdeckung im Prinzip die gleiche Abgabeleistung wie der Master.

Bei der **Temperaturregelung mit Subzonen** befindet der Master sowie die Slaves im Temperaturregelmodus Sowohl der Master als auch alle Slaves haben ihren eigenen Applikationsfühler für die Istwerterfassung der Temperatur am (SENS 2) angeschlossen. Alle Slaves erhalten über den CAN-Bus vom Master den gleichen Sollwert für die individuelle Regelung der Subzonen. Somit haben alle Subzonen unabhängig der thermischen Belastung im Prinzip die gleich Temperatur

Beim **Master**-Generator muss die Art der Wertvorgabe über den CAN-Bus (Sollwert oder Stellgrösse) mit den Parameter "CAN Config.bit1" konfiguriert werden.

CAN Config bit $1 = 0$:	Master sendet seine Sollwert (Knebelposition)
CAN Config bit $1 = 1 (+2)$:	Master sendet seine Stellgrösse (aktuelle Heizleistung)

	Index	Subindex	Default	Туре
CAN Config	0x3033	1B	1	Unsigned-8

Über die Linearisierungsfunktion (Gain und Offset) können die einzelnen Spulen der Slaves in Ihrer Anwendung gedrosselt oder verstärkt werden.

9.17.6 Leistungsreduktion im Temperaturregelmodus

Auch im Temperaturregelmodus kann die maximale Heizleistung über einen Potenzial freien Kontakt an OPT 1+ und OPT 1- reduziert werden und somit die maximale Leistungsaufnahme über einen einfachen Schalter reduziert werden.

9.17.7 Regelparameter

Die Dynamik der Temperaturregelung kann über die Regelparameter verändert werden.

- Der "P-Part" entspricht der proportionalen Verstärkung der Regelabweichung nach der Formel ControllerOut (power level) = deltaT *P-Part
- Der "I-Part " entspricht der zeitlichen Aufsummierung der Regelabweichung nach der Formel ControllerOutRate(powerLevel/s)=deltaT*I-Part/100

Bei Kochapplikationen kann die Menge der Wasserdampferzeugung um den Siedepunkt gesteuert werden.

Zwischen den Temperaturbereichen 90-110°C wird dabei der I-Part ausgeschaltet, so dass um den Siedepunkt eine Temperaturabweichung bleibt und je nach deren Grösse mehr oder weniger Leistung mittels P-Part im Topf erzeugt werden kann.

Temperaturbereich	Regelungsart
bis 89 °C / ab 111°C	Immer PI-Regelung
90°C – 110°C	Entweder P- oder PI-Regelung (über TCOA/TCOB Temp config konfigurierbar)

Disable iPart between 90°C-110°C

Die Ausschalten des I-Part kann im Parameter "TCOA/TCOB Temp config" aktiviert werden...

Für den indexierten Zugriff:

TCOA/TCOB Temp config.bit3 = 0: TCOA/TCOB Temp config.bit3 = 1 (+8): I-Part im Bereich 90-110°C aktiviert I-Part im Bereich 90-110°C deaktiviert

Die Temperaturregelfunktion kann auch zusammen mit dem Multiplexer eingesetzt werden. Sowohl für die Spule A als auch für die Spule B können die Regelparameter verändert werden. Ohne Multiplexer ist nur die Regelung der Spule A aktiv.

Spule A :

	Index	Subindex	Default	Туре
TCOA Tcount P-Part	0x3039	8	20	Unsinged-16
TCOA Tcount I-Part	0x3039	9	5	Unsinged-16
TCOA Config	0x3039	2	0	Unsinged-8

Spule B :

	Index	Subindex	Default	Туре
TCOB Tcount P-Part	0x303A	8	20	Unsinged-16
TCOB Tcount I-Part	0x303A	9	5	Unsinged-16
TCOA Config	0x303A	2	0	Unsinged-8

9.18 Zusätzlicher Umgebungslüfter

Bei des S-Class Induktionssystemen kann an den OPT-Klemmen 2+ und 2- ein zusätzlicher 24VDC Lüfter zur Umwälzung der Umgebungsluft angeschlossen werden.

Der zusätzliche Innenlüfter wird eingeschaltet, falls die Umgebungstemperatur des Generators über dem im Parameter "Ambient fan on" liegt. Sobald die Umgebungstemperatur unter den im Parameter "Ambient fan off" definierten Wert fällt, schaltet der Lüfter aus.

	Index	Subindex	Default	Туре
Ambient fan on	0x3035	27	52	Integer-8
Ambient fan off	0x3035	28	48	Integer-8

Ebenfalls wird der zusätzliche Lüfter eingeschaltet, falls der Wert des CERAN-Glas Temperaturfühlers den im Parameter "Ambient fan limit" definierten Wert überschreitet. Sobald dieser wieder um 5°C unter die genannte Temperaturschwelle fällt, schaltet der Lüfter wieder aus.

	Index	Subindex	Default	Туре
Ambient fan limit	0x3035	29	125	Integer-16

Falls die ABCD-Schnittstelle (Parameter PMG Enable =5), der Energiepuls (Parameter ENG Enable =1), der Multiplexer (Parameter MUX Enable =3) oder das Aufheizsignal (Parameter "TCOA/B Config.bit4" =1) aktiviert ist, kann der zusätzliche Lüfter nicht angesteuert werden.

9.19 Zusätzlicher Betrieb/Restwärme Signalausgang

Alternativ zum zusätzlichen Umgebungslüfter kann an den OPT-Klemmen 2+ und 2- auch ein Betrieb/Restwärme Signal zur Ansteuerung eines externes 24VDC-Relais/LED ausgegeben werden.

Zur Signalisation vorhandener Kochfeld Restwärme wird der Wert des CERAN-Glas Temperaturfühlers ausgewertet und mit dem im Parameter "Ambient fan limit" definierten Wert verglichen. Bei Überschreitung wird das Steuersignal aktiviert. Fällt der Wert um 5°C unter die genannte Temperaturschwelle wird das Signal wieder deaktiviert.

Empfohlener Wert für Temperaturschwelle:

45 < x < 65: Bei Bodentemperatur über x °C wird das Steuersignal ausgegeben

	Index	Subindex	Default	Туре
Ambient fan limit	0x3035	29	125	Integer-16

Zusätzlich kann die Signalisation des eingeschaltetem Kochfeld mittels Parameter "Advanced Config" aktiviert werden.

Advanced Config bit 1 = 0: Signalausgang bleibt beim Einschalten des Kochzone unverändert Advanced Config bit 1 = 1 (+2): Signalausgang wird auch durchs Einschalten der Kochzone aktiviert

	Index	Subindex	Default	Туре
Advanced Config	0x3035	2B	0	Unsigned-16

Falls die ABCD-Schnittstelle (Parameter PMG Enable =5), der Energiepuls (Parameter ENG Enable =1), der Multiplexer (Parameter MUX Enable =3) oder das Aufheizsignal (Parameter "TCOA/B Config.bit4" =1) aktiviert ist, kann der zusätzliche Lüfter nicht angesteuert werden.

9.20 Sollwert Skalierung

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

9.20.1 Skalierung der Knebel für Temperatursollwert

Der Zusammenhang zwischen Winkellage des Sollwertgebers und dem resultierendem Temperatursollwert kann über zwei Arbeitspunkte konfiguriert werden. Dazu wird der gewünschte Temperatursollwert für die Knebelstellung bei 90° und 270° Winkelgrade hinterlegt. Die maximale Solltemperatur kann ebenfalls über einenMit dem Parameter begrenzt werden.

Für den Fall, dass mit einem Multiplexer gearbeitet wird, können die Parameter für Spule A und Spule B unabhängig voneinander eingestellt werden. Ohne Multiplexer ist Spule A aktiv.

Spule A :

	Index	Subindex	Default	Туре
TCOA TRef 90	0x3039	17	30	Integer-16
TCOA TRef 270	0x3039	18	90	Integer-16
TCOA TMax	0x3039	А	250	Integer-16

Spule B :

·	Index	Subindex	Default	Туре
TCOB TRef 90	0x303A	17	30	Integer-16
TCOB TRef 270	0x303A	18	90	Integer-16
TCOB TMax	0x303A	A	250	Integer-16

Beispiel:

Der Temperatursollwert soll bei einer Knebeldrehung von 90° einen Temperaturwert 30°C und bei Knebeldrehung von 270° einen Temperaturwert von 80°C entsprechen.

TRef 270 = 80

9.20.2 Skalierung des Touch-Slider für Temperaturvorgabe

Der Zusammenhang zwischen der angewählten Sliderposition und dem resultierendem Temperatursollwert kann für jede Anwendung individuell über die Anfangs- (AW) und Endwerte (EW) konfiguriert werden. Dazu werden dier Parameterwerte Ref Temp 90 und Ref Temp 270 aus den Anfangs- und dem Endwert mit untenstehender Formeln berechnet.

heatingxcooking

	Index	Subindex	Default	Туре
Ref Temp 90	0x3056	1 bis 4	30	Integer-16
Ref Temp 270	0x3057	1 bis 4	90	Integer-16

- Bsp: Für eine Bräter-Steuerung mit einem Temperaturbereich von 50 250°C ergeben sich damit folgende Werte
 - → Ref Temp 90 = $\frac{250-50}{300} * 90^{\circ}C + (1.1 * 50 0.1 * 250)^{\circ}C = 90^{\circ}C$
 - → Ref Temp 270 = $\frac{250-50}{300}$ * 270°C + (1.1 * 50 0.1 * 250)°C = 210°C

Der entsprechende Temperaturbereich (\pm 2%) stellt sich damit automatisch ein.

9.20.3 Skalierung der Kochstufenvorgabe

Der Zusammenhang zwischen Winkellage des Sollwertgebers und dem resultierendem Power-Level im Wertebereich von 0 bis 255 kann mit der Funktion $f(x)=Gain^*x/1000 + Offset$ beschrieben werden. Mit den Parametern "Gain" und "Offset" kann die Vorgabeleistung in Abhängigkeit der Knebelposition verändert werden.

Anwendungsbeispiele:

<u>Standardeinstellung</u> , <i>Gain=1000</i> und <i>Offset =0</i> Die Sollwertvorgabe steigt ab der Null-Position bis zum Endanschlag des Knebels linear an.	$f(x) = 1000 * \frac{x}{1000} + 0$
Leistung ab Mitte der Knebelposition, <i>Gain=2000</i> und <i>Offset =-255</i> Bis zur Hälfte der Knebelposition ist die Leistungsvorgabe kleiner als 0, dementsprechend ist die Leistungsvorgabe =0. Ab der Hälfte steigt die Leistungsvorgabe doppelt so schnell an und er- reicht beim Endanschlag des Knebels 100%.	$f(x) = 2000 * \frac{x}{1000} - 255$
Standardeinstellung mit einem Gain=2000 und Offset =0 Die Sollwertvorgabe steigt ab der Null-Position bis zur Mitte der Knebelpo- sition auf 100% linear an. Die volle Leistung wird also schon nach der Hälfte erreicht.	$f(x) = 2000 * \frac{x}{1000} + 0$

Für den Fall, dass mit einem Multiplexer gearbeitet wird, können die Parameter für Spule A und Spule B unabhängig voneinander eingestellt werden. Ohne Multiplexer ist Spule A aktiv. Spule A:

•	Index	Subindex	Default	Туре
TCOA PowLevel offset	0x3039	19	0	Integer-16
TCOA PowLevel gain	0x3039	1A	1000	Integer-16

Spule B:

	Index	Subindex	Default	Туре
TCOB PowLevel offset	0x303A	19	0	Integer-16

. .

TCOB PowLevel gain	0x303A	1A	1000	Integer-16

9.21 Geräuschreduktion

. . . .

Die Netzfrequenz (50Hz) erzeugt bei Induktionssystemen eine pulsierende Leistungsabgabe, welche im Einphasenbetrieb der doppelten (100Hz) und im Dreiphasenbetrieb der sechsfachen (300Hz) Netzfrequenz entspricht. Diese führt üblicherweise zu den bekannten 100Hz / 300Hz Brummtönen.

Speziell bei Dreiphasenbetrie(300Hz) können die Geräusche störend sein. Dank einer Störgrössenaufschaltung kann der Brummton durch eine gleichfalls pulsierenden Leistungsreduzierung stark gesenkt werden.

.

100

Advanced Config bit $2 = 0$: Advanced Config bit $2 = 1 (+4)$:	4): Aufschaltung zur Geräuschreduktion deaktiviert 4): Aufschaltung zur Geräuschreduktion aktiviert			
	Index	Subindex	Default	Туре
Advanced Config	0x3035	2B	0	Unsigned-16

Durch die Aufschaltung sinkt die maximale Leistungabgabe leicht spürbar auf etwa 85%.

. . . .

9.22 Absenkung der Leistungskurve

Durch Aktivierung einer Leistungskurvenabsenkung kann die Knebelauswertung optimal an Kundenbedürfnisse angepasst werden. Dabei wird die Leistungsabgabe unterhalb einer definierbaren Sollwertvorgabe (Knebelstellung) entsprechend reduziert.

Die Schwelle, ab welcher die Leistungskurvenabsenkung ausgeschaltet wird, kann über den Parameter "Power curve 100p" konfiguriert werden.

0: Keine Absenkung der Leistungskurve

1 < x < 254: Bei Sollwertvorgabe grösser x wird die auf volle Leistungskurve umgeschaltet 255: Die Absenkung der Leistungskurve ist immer aktiv

	Index	Subindex	Default	Туре
Power curve 100p	0x3035	30	250	Unsigned-8

Die Intensität der Absenkung kann über den Parameter "Power curve reduction" in %-Schritten parametriert werden:

2F

0 1 < x < 99: 100:	Keine Leistungsab Die Leistungsvorg Keine Absenkung	gabe unterhal abe entspricht der Leistungsl	lb der Schwelle : x % der Leistun kurve	gskurve		
		Index	Subindex	Default	I	Туре

0x3035

9.23 Schattenbedienung

Power curve reduction

9.23.1 Mit zwei Hall-Knebel

Um zwei Hall-Knebel als Schattenbedienung nutzen zu können, werden die Knebel an den mit "KNOB A" und "KNOB B" bezeichneten Anschlüssen angeschlossen.

Unsigned-8

9.23.2 Mit zwei Touch Slider

Um zwei Touch Slider als Schattenbedienung nutzen zu können, werden zwei Interface Geräte benötigt. Diese werden mittels CAN Datenkabel mit dem REX Generator verbunden. An den beiden Interface Geräten kann dann wieder mittels I2C Kabel jeweils ein Touch Slider angeschlossen werden.

Die mit dem CAN Bus verbundenen Geräte müssen sich untereinander eindeutig identifizieren. Dafür muss jedem Gerät eine "CAN NodeID" gegeben werden. Vorgehen:

- 1. Dem Generator eine CAN NodelD zuweisen, Beispielsweise 1.
- 2. Dem *Spuleninterface* die CAN NodelD des Generators + 100 zuzweisen. In diesem Beispiel wäre das: 1+100=101.
- 3. Dem *Interface* die CAN NodelD des Generators + 110 zuweisen. In diesem Beispiel wäre das: 1+110=111.

	Index	Subindex	Default	Туре
CAN NodeID	0x3033	5	1	Unsigned-8

9.24 Memory Stick

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

Der externe Memory Stick ermöglicht das Speichern von gerätespezifischen Parametern. Sollte ein REX Generator einmal ausfallen, kann dieser einfach getauscht und der Memory Stick wieder eingesteckt werden. Dieser liefert dem neuen Generator die kundenspezifischen Parameter.

Parameter vom Memory Stick auf den Generator laden:

<u>Memory Stick → Generator</u>

- 1. Generator vollständig auschalten
- 2. Memory Stick mit den gespeicherten Daten anschliessen
- 3. Generator ans Stromnetz anschliessen und einschalten
- 4. Die Parameter werden beim Aufstarten vom Memory Stick auf den Generator geladen

Parameter vom Generator auf das Memory Stick laden:

Generator → Memory Stick

- 1. Generator ans Stromnetz anschliessen und einschalten
- 2. Memory Stick nach 2 Sekunden anschliessen
- 3. Über Bluetooth einen beliebigen Parameter schreiben
- 4. Alle Parameter werden vom Generator auf das Memory Stick geladen

Wird ein Geräte mit einem leerem Memory Stick eingeschaltet, wird der Memory Stick gemäss den eingestellten Werten des Gerätes geladen.

9.25 Externe Steuermodus

Zur externen Steuerung der FLUXRON Induktionssysteme über CANopen Protokolle muss das System mit Hilfe des Parameters "FLX Config" auf externen Steuermodus umgeschaltet und die Betriebsmodus (Leistungsvorgabe / Temperaturvorgabe) selektiert werden.

FLX Config bit 1 = 0: FLX Config bit 1 = 1 (+2)	Externe : Externe	Externe Steuervorgabe deaktiviert Externe Steuervorgabe aktiviert			
FLX Config bit 5 = 0: FLX Config bit 5 = 1 (+32	Leistung 2): Tempera	svorgabe aktiv atorvorgabe aktiv			
	Index	Subindex	default	Туре	
FLX Config	0x3039	2	0	Unsinged-16	

Für die externe Fehlerquittierung wird der Sollwert kurz auf Null gesetzt

9.25.1 Leistungsvorgabe über externe Steuerung

Bei der Leistungsvorgabe schreibt die externe Steuerung den Sollwert direkt in den Parameter" "FLX Power level".

- 0: Leistungsvorgabe ausgeschaltet
- 1: Minimale Leistungsabgabe
- 255: Maximale Leistungsabgabe

	Index	Subindex	Default	Туре
FLX Power level	0x3035	5	0	Unsigned-8

9.25.2 Temperaturvorgabe über externe Steuerung

Bei der Temperaturregelung schreibt die externe Steuerung die Sollwertvorgabe direkt in die Parameter "TCOA/B Temp Setpoint".

	Index	Subindex	Default	Туре
TCOA Temp Setpoint	0x3039	6	0	Integer-16
TCOB Temp Setpoint	0x303A	6	0	Integer-16

Dabei kann eine mindest- Temperatur definiert werden:

	Index	Subindex	Default	Туре
TCOA Temp min	0x3039	21	25	Integer-16
TCOB Temp min	0x303A	21	25	Integer-16

Das Einschalten des Regelbetriebes erfolgt dann über die Parameter "TCOA/B Control".

TCOA /TCOB Control bit 0 = 0: Regelung ausgeschaltet TCOA /TCOB Control bit 0 = 1: Regelung eingeschaltet

	Index	Subindex	Default	Туре
TCOA Control	0x3039	3	0	Unsigned-16
TCOB Control	0x303A	3	0	Unsigned-16

9.25.3 Autostart

Die Temperaturregelung kann auch direkt beim Aufstarten des Gerätes mit der Austostartfunktion geüber Parameter "TCOA/B Config" aktiviert werden. Dabei wird der Wert im Parameter "TCOA Temp Preset" als Sollwertvorgabe übernommen, falls die Kopierfunktion im Parameter "TCOA/B Config" aktiviert ist.

TCOA /TCOB Config bit 0 = 0: TCOA /TCOB Config bit 0 = 1:

TCOA /TCOB Config bit 1 = 0: TCOA /TCOB Config bit 1 = 1(+2):

Temp-Regelung nach dem Aufstarten aus Temp-Regelung nach dem Aufstarten ein (Autostart)

Nach dem Aufstarten ist der Temperatursollwert 0°C Preset wird beim Aufstarten als Sollwert verwendet

	Index	Subindex	Default	Туре
TCOA Control	0x3039	3	0	Unsigned-16
TCOB Config	0x303A	2	0	Unsigned-8
TCOA Temp Preset	0x3039	6	80 (=80°C)	Integer-16
TCOB Temp Preset	0x303A	6	80 (=80°C)	Integer-16

9.25.4 Überwachung der externen Steuerung

Die Geräte sind mit der Heartbeat Funktion nach CANopen Protokoll gemäss EN 50325-4 ausgerüst. Bei Aktivierung derselben muss der CAN Master dem Induktionsgenerator zyklisch (Bsp.1sec) ein Heartbeatsignal mit CAN-ID 0x700+NodeID senden. Wird bei aktiver Heartbeat-Funktion der CAN-Bus unterbrochen, schaltet das Gerät innert kurzer Zeit in den Kommunikationsfehler E11.

Consumer Heartbeat Time:	0	Heartbeat Funktion inaktiv
Consumer Heartbeat Time:	>0	Heartbeatsignal vom Master notwendig

	Index	Subindex	Default	Туре
Consumer Heartbeat Time	0x1016	1	0	Unsigned-32

Beispiel : Wird beim Generator mit NodelD 1 der Parameter "Consumer Heartbeat Time" auf 68536 (0x00010BB8) gesetzt, erwartet der Gererator mindestens alle 3 Sekunden das Heartbeatsignal des Masters.

9.26 Gateway

Mit der Gateway Funktion ist es möglich, die Kommunikationsdienste auf ein anderes FLUXRON Gerät über CAN-Feldbus umzuleiten. Wird über den Parameter "BLT Gateway enable" die Gateway Funktion aktiviert, findet der Datenaustausch nicht mit dem verbundenen Gerät sondern mit dem, welches über die CAN-Busadresse gemäss Parameter "BLT Gateway nodelD" verfügt.

Typischerweise wird die Gateway Funktion bei Interface-Modulen angewendet. Verbindet man sich mit einem Inteface (Bsp. Interface mit CAN NodeID 101), wird die Kommunikation gemäss den Defaulteinstellungen zum entsprechenden Generator (Bsp.: Generator mit CAN NodeID 1) umgeleitet.

Für Remotezugriff über Buetooth oder WLAN kann es aber auch von Interesse sein, vom gleichen Kommunikationsdienst aus auf alle Geräte des Can-Bus Netzwerkes zu zugreifen.

Die Gateway Funktion wird über Parameter "BLT Gateway enable, wie folgt aktiviert:

- 0: Gateway Funktionalität deaktiviert
- Gateway Funktionalität aktiviert 1:

Die CAN-Busadresse des Gerätes, an welche die Datenkommunikation weitergeleitet werden soll, kann im Parameter "BLT Gateway nodeID" hinterlegt werden:

- Weiterleitung an Generator-Module mit CAN nodeID 1 8 1 – 8:
- Weiterleitung an Interface-Module mit CAN nodeID 101 108 101 - 108:

111 - 118: Weiterleitung an Schattenbedienungs-Module mit CAN nodelD 111 - 118

	Index	Subindex	default	Туре
BLT Gateway enable	0x3029	1	0	Unsinged-8
BLT Gateway nodeID	0x3029	2	101	Unsinged-8

Die Parameter "BLT Gateway enable" und "BLT Gateway nodelD" sind die einzigen Parameter, die nie umgeleitet werden. Ein Up- und Download dieser Parameter erfolgt immer nur zum verbundenen Gerät.

Beispiel:

ist via Bluetooth mit Generator mit Node ID 8 verbunden und kommuniziert mit demselben. Handy A Handy B ist via Bluetooth mit Generator mit Node ID 1 verbunden, kommuniziert aber mit Generator mit Node ID3

Handy B

9.27 Restwärmeanzeige

Im Aus-Zustand wird bei einem noch heissen Kochfeld auf dem Display das Restwärmesymbol ausgegeben. Das Restwärmesymbol erlischt, sobald die Oberflächetemperatur auf den Wert im Parameter "Residual heat limit" absinkt.

Bei einem 1x7Segmenrt-Display wird ein Minuszeichen ausgegeben:

Restwärmeanzeige

Bei einem 4x7Segmenrt-Display kann sowohl ein Minuszeichen oder in Kombination zusätzlich auch noch die aktuelle Oberflächentemperatur ausgegeben werden:

Restwärmeanzeige ohne Oberflächentemperaturangabe

113-Restwärmeanzeige mit der aktuellen Oberflächentemperatur von beispielsweise 113°C

Die zusätzliche Anzeige des Temperaturwertes zum Restwärmesymbol kann über den Parameter "Advanced Config" aktiviert /deaktiviert werden.

Advanced Config bit $3 = 0$: Advanced Config bit $3 = 1$ (+8):	Temperaturanzeige mit Restwärmesymbol deaktiviert Temperaturanzeige mit Restwärmesymbol aktiviert				
	Index	Subindex	Default	Туре	
Residual heat limit	0x3035	13	50		
Advanced Config	0x3035	2B	0	Unsigned-16	

10 Applikationsprogramme

Das S-Class Induktionssystem untersützt Spezialanwendungen die über den Parameter "APP number" ausgewählt werden können. Die Applikationsprogramme haben eine ganz spezifische Funktionalität und können darum nicht beliebig mit anderen Funktionen kombiniert werden.

10.1 Applikation - Kochen/Warmhalten (POT/KeepWarm) mit Slider

Dank der Applikation Kochen/Warmhalten kann sowohl die Kochstufe als auch die Temperatur mit dem Slider angewählt werden. Dabei wird das Induktionsfeld entweder zum Kochen mit Leistungsstufe (Pot Mode) oder zum Warmhalten/Grillieren mit Temperaturregelung (KeepWarm Mode) genutzt.

Zum Einschalten muss die On/Off-Taste vier Sekunden lang berührt werden. Anschliessend kann zum Aktivieren des Kochstufen-Modus die POT-Taste oder zum Aktivieren des Warmhalte Modus die KeepWarm-Taste für zwei Sekunden berührt werden. Nach Wahl des Moduses können die Sollwerte vorgegeben werden.

Über den Parameter "APP number" kann zwischen den Applikationen gewählt werden:

2 Applikation Kochen / Warmhalten mit Sliderfunktion

Applikation Kochen / Warmhalten mit Preset-Tasten 3

	Index	Subindex	Default	Туре
APP number	0x2000	В	0	Unsigned-8

Zur Benuzung der zwei Applikationsprogramme muss zusätzlich die KeepWarm Funktion aktivierrt werden.

- 0: KeepWarm deaktiviert
- 1: KeepWarm aktiviert

	Index	Subindex	Default	Туре
KWF Enable	0x2001	1	0	Unsigned-8

10.1.1 Kochen / Warmhalten (POT / KeepWarm) mit Preset-Tasten

Beim Kochen / Warmhalten mit Preset Tasten können drei vordefinierte Sollwerte sowohl für die Kochstufe als auch für die Temperatur durch Berühren des Sliderpbereich angewählt werden. Über den Parameter "APP Powerlevel 1-3" können die drei vordefinierten Kochstufen in ihrer Höchstauflösung von 0 (0%) bis 255 (100%) und über die Parameter "APP Temperature Preset1-3" die drei vordefinierten Temperatur Sollwerte in °C definiert werden.

I	
	A Miller I
	- A - A

Preset Kochstufe für Pot Modus

	Index	Subindex	Default	Туре
APP Powerlevel Preset1	0x302A	4	64 =25%	Unsigned-8
APP Powerlevel Preset2	0x302A	5	128=50%	Unsigned-8
APP Powerlevel Preset3	0x302A	6	255=100%	Unsigned-8

Preset Temperaturwerte für den KeepWarm-Modus

	Index	Subindex	Default	Туре
APP Temperature Preset1	0x302A	1	50°C	Integer-16
APP Temperature Preset2	0x302A	2	75°C	Integer-16
APP Temperature Preset3	0x302A	3	100°C	Integer-16

10.1.2 Kochen / Warmhalten (POT / KeepWarm) mit Sliderfunktion

Beim Kochen / Warmhalten mit Sliderfunktion können Sollwert durch Berühren des Sliderbereiches stufenlos angewählt werden. Die Kochstufenskalierung ist dabei von Parameter "APP Powerlevel Preset1" bis Parameter "APP Powerlevel Preset3" einstellbar. Die Temperaturskalierung hingegen ist von Parameter "APP Temperature Preset1" bis Parameter "APP Temperature Preset3" einstellbar.

Preset Kochstufe für Pot Modus

	Index	Subindex	Default	Туре
APP Powerlevel Preset1	0x302A	4	64 =25%	Unsigned-8
APP Powerlevel Preset3	0x302A	6	255=100%	Unsigned-8

Preset Temperaturwerte für den KeepWarm-Modus

	Index	Subindex	Default	Туре
APP Temperature Preset1	0x302A	1	50°C	Integer-16
APP Temperature Preset3	0x302A	3	100 °C	Integer-16

10.2 Applikation - Erweiterte Sensorauswertung SENS3 und SENS4

Bei aktivierter Sensorauswertung können die Sensoren 3 und 4 (SENS3, SENS4) als Überwachung zu hoher Temperaturen eingesetzt werden. Sensor 2 hat keine Überwachungsfunktion, kann aber als Indikator verwendet werden

Pro Sensor kann ein Temperatur-Limit gesetzt werden, wenn die eingestellte Limit- Temperatur erreicht ist, wird die Leistung des Generators pro Überschrittenem Grad um 20 % reduziert.

	Index	Subindex	Default	Туре
APP_Temp_input3_limit	0x302A	8	193°C	Integer-16
APP_Temp_input4_limit	0x302A	А	145°C	Integer-16

Zudem kann pro Sensor ein Error Level gesetzt werden, wenn die eingestellte Error- Temperatur erreicht ist, wird ein Fehler angezeigt und die Leistungszufuhr wird gestoppt. Bei SENS3 wird Error 50, bei SENS4 wird Error56 angezeigt.

	Index	Subindex	Default	Туре
APP_Temp_input3_max_E50	0x302A	9	220°C	Integer-16
APP_Temp_input4_ max_E56	0x302A	В	170°C	Integer-16

Über den Parameter "APP number" kann die erweiterte Sensorüberwachung angewählt werden:

0 Kein Applikationsrogramm aktiv

4 erweiterte Sensorauswertung SENS3 und SENS4 aktiv

	Index	Subindex	Default	Туре
APP number	0x2000	В	0	Unsigned-8

11 Betriebsstundenzähler

11.1 Einschaltzeit

Die Stunden werden erfasst, sobald das Gerät eingeschaltet wird.

	Index	Subindex	Default	Туре
Power on time	0x3006	1	-	Unsigned-32

11.2 Betriebsstunden

Sobald das Gerät in Betrieb ist, wird die Zeitdauer in Stunden gezählt.

	Index	Subindex	Default	Туре
Working time	0x3006	2	-	Unsigned-32

11.3 Kühlkörpertemperatur

Wenn das Gerät in Betrieb ist, werden die Anzahl Stunden der jeweiligen gemessenen Kühlkörpertemperatur aufgezeichnet. Über 75°C wird die Leistungsabgabe begrenzt.

	Index	Subindex	Default	Туре
Heatsink < 50°C	0x3006	3	-	Unsigned-32
Heatsink 5059°C	0x3006	4	-	Unsigned-32
Heatsink 6074°C	0x3006	5	-	Unsigned-32
Heatsink > 75°C	0x3006	6	-	Unsigned-32

11.4 Glastemperatur

Die Anzahl Stunden der jeweiligen gemessenen Glastemperatur wird aufgezeichnet.

	Index	Subindex	Default	Туре
Glass < 100°C	0x3006	7	-	Unsigned-32
Glass 100179°C	0x3006	8	-	Unsigned-32
Glass 180243°C	0x3006	9	-	Unsigned-32
Glass > 243°C	0x3006	A	-	Unsigned-32

11.5 Umgebungstemperatur

Die Anzahl Stunden der jeweiligen gemessenen Umgebungstemperatur wird aufgezeichnet.

	Index	Subindex	Default	Туре
Ambient temp >70°C	0x3006	E	-	Unsigned-32
Ambient temp 7185°C	0x3006	F	-	Unsigned-32
Ambient temp 86104°C	0x3006	10	-	Unsigned-32
Ambient temp >105°C	0x3006	11	-	Unsigned-32

11.6 Spulenlimitierung

Die Spulenerwärmung wird mit einer I²t Funktion überwacht. Wird während dem Betrieb diesbezüglichdie Leistung begrenzt, werden diese Stunden im Parameter "i2t limTime" aufgezeichnet.

	Index	Subindex	Default	Туре
I2t limTime	0x3006	В	-	Unsigned-32

11.7 Spannungslimitierung

Wird das Spannungslimit an den Schwingkreiskondensatoren überschritten und die Leistung begrenzt, werden diese Stunden im Parameter "Volt limTime aufgezeichnet.

	Index	Subindex	Default	Туре
Volt limTime	0x3006	С	-	Unsigned-32

11.8 Geräte Lüfter

Wenn der Lüfter in Betrieb ist, werden deren Stunden aufgezeichnet.

	Index	Subindex	Default	Туре
Fan working time	0x3006	D	-	Unsigned-32

12 Überwachungen

12.1 Dynamik der Temperaturmessung

Bei aktiver Temperaturregelung wird die Dynamik der Istwerterfassung überwacht. Verändert sich die Isttemperatur schneller als erwartet, ist der Messfühler vermutlich nicht mehr in Kontakt mit dem zu messendem Medium und es wird ein Fehler generiert.

Dabei wird der aktuelle Istwert mit seinem gefilterten Wert (Filterzeitkonstante über Parameter "SUP TStep filter time" veränderbar) verglichen. Überschreitet die aufsummierte Differenz eine Fehlerlimite (Parameter "SUP TStep error lim") spricht die Überwachung an und generiert einen Apllikationsfühlerfehler (Error 21). Liegt der gefilterte Wert innerhalb eines definierbaren Bereich Hyst (Parameter SUP TStep hyst temp") zum aktuellen Messwert, wird die Abweichung nicht aufsummiert und kein Fehler generiert.

Legende:

Die Überwachungscharakteristik kann über folgende Parameter an die Bedürfnisse der Applikation angepasst werden.

	Index	Subindex	Default	Туре
SUP TStep hyst temp	0x303C	7	10	Integer-16

heatingxcooking

SUP TStep error lim	0x303C	8	200	Integer-16
SUP TStep filter time	0x303C	9	100	Unsigned-16

Der aktuelle Wert des Fehlerintegrals, welches mit der Fehlerlimite verglichen wird, kann über den Parameter "TCOA/B SUP TStep integral" ausgelesen werden.

	Index	Subindex	Default	Туре
TCOA SUP TStep integral	0x3039	1F	0	Integer-16
TCOB SUP TStep integral	0x303A	1F	0	Integer-16

Disable sensor high dynamic check

Die Dynamiküberwachung kann im Parameter "FLX Config" deaktiviert werden:

FLX Config.bit11 = 0 aktiviert FLX Config.bit11 = 1 (+2048) deaktiviert

	Index	Subindex	Default	Туре
FLX config	0x3035	1	0	Unsigned-16

12.2 Plausibilität Temperaturregelung

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar und kann nur im **Temperaturregelungmodus** genutzt werden.

Die Gradientenüberwachung wertet die Temperaturänderung in Abhängigkeit der zugeführten Leistung aus. So kann überprüft werden, ob die Korrelation der Parameter realistisch ist.

Die Entscheidung, wann die Überwachung die Leistung ausschaltet (Error 21), kann mittels Parameter beeinflusst werden. Das Gerät schaltet mit Fehler 21 aus, wenn sich der Gradient in der rot eingefärbten Fläche (siehe Grafik) befindet und der Counter (Parameter,,TCOA/ TCOB SUP Delay cnt") abgelaufen ist.

Die Eckpunkte der eingeschlossenen roten Fläche werden mit den Parametern "SUP Power low", "SUP Power high", "SUP Gradient high" und "SUP Gradient low" festgelegt. Mit dem Parameter "SUP

Delta" wird ein Temperaturbereich unterhalb der Solltemperatur angegeben, in welchem die Gradientenüberwachung nicht mehr aktiv ist. Die Überwachung ist aktiv, wenn: (Soll Temperatur - aktuelle Temperatur) > "SUP delta"

Beispiel:

Der aktuelle Arbeitspunkt (Temperaturgradient in Funktion der Leistungsaufnahme / blaue Markierung) unterschreitet zwischen den Punkten P1 und P2 die rote Linie, welche die minimale Gradientenschwelle darstellt. Solange sich der Arbeitspunkt innerhalb der rot eingefärbten Fläche befindet, wird ein Zähler mit Startwert gemäss Parameter "SUP Delay" dekrementiert. Wird die Gradientenschwelle wieder erreicht, wird der Wert wieder auf den Startwert inkrementiert. Erreicht der Zählerstand den Wert null, wird der ERROR 21 angezeigt. Der Fehler muss manuell zurückgesetzt werden.

Die Parameter sind wie folgt definiert:

	Index	Subindex	Default	Туре
SUP Delta	0x303C	1	15	Unsigned-16
SUP Power high	0x303C	2	5000	Integer-16
SUP Power low	0x303C	3	1000	Integer-16
SUP Gradient high	0x303C	4	50	Integer-16
SUP Gradient low	0x303C	5	10	Integer-16
SUP Delay	0x303C	6	700	Unsigned-16

Die Plausibilitätsüberwachung kann im Parameter "FLX Config" deaktiviert werden:

Disable sensor plausibility check		FLX Config.bit10 = 0 FLX Config.bit10 = 1 (+1024)		aktiviert deaktiviert	
	Index	Subindex	Default	Туре	
FLX config	0x3035	1	0	Unsigned-16	

Für den Fall, dass mit einem Multiplexer gearbeitet wird, arbeiten zwei Überwachungszähler für Spule A und Spule B unabhängig voneinander. Ohne Multiplexer ist nur der Überwachungszähler Spule A aktiv.

	Index	Subindex	Default	Туре
TCOA Sup delay cnt	0x3039	1D	-	Unsigned-16
TCOB Sup delay cnt	0x303A	1D	-	Unsigned-16

12.3 Überwachung der Frischluftzufuhr

Wenn die Kühlkörpertemperatur grösser wird als der im Parameter "FLX Warning F temp" eingetragene Wert, so wird auf dem Display "F" angezeigt, sobald das Bedienelement (Knebel oder Touch) in Nullposition ist.

Diese Warnung weist darauf hin, dass das Gerät ungewöhnlich warm ist. Der Fettfilter und die Luftzufuhr sind zu prüfen.

· ·	Index	Subindex	Default	Туре
FLX Warning F temp	0x3035	18	70	Integer-8

12.4 Überwachung Leerkochschutz

Aus Sicherheitsgründen wird bei zu hohem Temperaturgradient die Leistung reduziert. Je höher die Temperatur ist, desto früher wird die Leistung reduziert. Beträgt die Temperatur ca. 40°C, so wird die Leistung bei einem Gradient ab 1°C/sec, bei 240°C schon bei 0.1°C/sec reduziert.

Mit dem "Gradient Lim lowT" kann das Verhalten der Leistungsreduktion bei 40°C beeinflusst werden. Der Wert beschreibt den Gradient, bei dem die Leistungsreduktion beginnt. Der Default Wert beträgt 1°/sec. Der Parameter wird in zehntel-Grad pro Sekunden angegeben. Soll die Leistungsreduktion beispielsweise bei 1.2°C/sec beginnen, so ist der Parameter "Gradient Lim lowT" mit 12 zu beschreiben.

0 - 12: Gradient Low Limit in $\left[\frac{1}{10} \circ C / \sec\right]$

	Index	Subindex	Default	Туре
Gradient Lim IowT	0x3030	d	12	Integer-8

12.5 Unzulässige Umgebungstemperatur

Steigt die Umgebungstemperatur des Gerätes gemäss Parameter "Ambient temp" über 75°C, wird die abgegebene Leistung pro Grad Celsius um 20% reduziert. Der Dezimalpunkt am Display leuchtet auf.

Steigt die Umgebungstemperatur des Gerätes über 80°C, wird der Fehlercode E03 angezeigt und der Generator schaltet aus. Unterschreitet die Temperatur wieder den Wert, wird der Fehler automatisch quittiert. Der Error Code wird im Fehlerspeicher mit aktueller Einschaltzeit abgelegt.

	Index	Subindex	Default	Туре
Ambient temp	0x3028	7		Integer-16

12.6 Schutz vor Kühlkörperüberhitzung

Steigt die Kühlkörper Temperatur über 75°C, wird die abgegebene Leistung pro Grad Celsius um 20% reduziert. Der Dezimalpunkt am Display leuchtet auf.

Steigt die Kühlkörper Temperatur über 80°C, wird der Fehlercode E03 angezeigt und der Generator schaltet aus. Unterschreitet die Temperatur wieder den Wert, wird der Fehler automatisch quittiert. Der Error Code wird im Fehlerspeicher mit aktueller Einschaltzeit abgelegt.

12.7 Schutz vor Spulenüberhitzung

Die Spule ist gegen Überhitzung geschützt. Dabei gilt es die Temperaturen der Ferrite sowie der Kupferwicklung zu begrenzen. Auf Basis des aktuellem Spulenstromes sowie der aktuellen Glastemperatur verglichen über einen definierten Zeitraum wird eine Spulenüberhitzung durch Leistungsreduktion verhindert. Dabei wird folgendes dreistufiges System

- 1. Erreicht die Glastemperatur die erste Temperaturschwelle, wird nach einer Spulenüberlastung abhängigen Zeit der Stromstrom auf dessen Nennstrom begrenzt
- Erreicht die Glastemperatur anschliessend auch die zweite Temperaturschwelle, wird nach einer Spulenüberlastung abhängigen Zeit der Stromstrom auf einen noch tieferen Wert begrenzt.
- 3. Erreicht die Glastemperatur den absoluten Maxiamalwert, wird die Abgabeleistung schritweise in Abhängigkeit der Überhitzung schrittweise auf null reduziert.

Die durch den Spulenschutz aktuell verursachte Leistungsreduktion kann über den Parameter

12.8 Induktionstauglichkeit Topf zu Kochzone

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

Die Induktionstauglichkeit ist sowohl vom Topfmaterial und der Topfform als auch von der Art und Grösse der Induktionsspule unter der Kochzone abhängig. Das System funktioniert optimal, wenn ein ferritischer Topf die Spule unter der Induktionszone komplett abdeckt.

Bekanntlich bildet das Induktionskochfeld zusammen mit dem Topf ein Resonanzkreis, deren Charakteristik über Parameter der gedämpften Schwingung definiert werden kann.

Der Induktionsgenerator kann die Induktionstauglichkeit des Topfes zur konkreten Kochzone über das Schwingverhalten ausmessen.

Dabei wird der Resonanzkreis jeweils beim Einschalten des Induktionsfeldes angeregt, die Resonanzfrequenz f_{res} (Hz) sowie deren Dämpfung δ (‰) gemessen und anschliessend das System bewertet.

	Index	Subindex	Default	Туре
PAN resonance frequency (fres / Hz)	0x3037	В	-	Unsigned-32
PAN damping (δ / ‰)	0x3037	С	-	Unsigned-8

Über den Parameter "PAN quality" kann die Tauglichkeit in % ausgelesen werden. Typische Werte sind:

> 100% Mehrschichttöpfe und Gusspfannen, welche den ganzen Spulenbereich abdecken

65 - 100% Kleine Induktionstöpfe auf grossen Rundspulen

35 - 75% Einzelne Induktionstöpfe auf Rechteck-, Doppel oder Vierfachspulen

10 - 25% Aluminiumpfannen mit feritischem Inlay auf grösseren Rund- oder Flächenspulen

0 - 5% Reine Aluminium- oder Kupferpfannen (nicht induktionstauglich)

	Index	Subindex	Default	Туре
PAN quality	0x3037	A	-	Unsigned-8

Über die Trace-Funktion im FLXAccess kann die Sprungantwort des Spulenstromes aufgezeichnet werden. Dabei wird der Parameter "Pan Step response" sowohl als Messignal als auch als Triggersignal ausgewählt. Die Triggerbedingung kann auf =20 gesetzt werden. Nach dem "Download Setup" muss ein "Single Shot" ausgelösst werden.

12.9 Sollwert Überwachung

Bei unterbrochener oder kurzgeschlossener Sollwertvorgabe wird die Leistung ausgeschaltet und der Fehlercode E05 ausgegeben. Nach der Behebung wird der Fehler automatisch quittiert. Der entsprechende Error Code wird im Fehlerspeicher mit aktueller Einschaltzeit abgelegt.

12.10 Phasenausfall – Warnung

Hinweis: Diese Funktion ist nur bei den S-Klasse Induktionen verfügbar

Bei Phasenausfall oder im Zweiphasenbetrieb reduziert sich automatisch die Abgabeleistung. Grundsätzlich ist das Gerät aber weiter funktionsfähig. Mit einer Warnung wird auf diesen Zustand aufmerksam gemacht:

Betriebsmode	Anzeige
Kochzone eingeschaltet	Dezimalpunkt auf 7-Segment leuchtet
Kochzone ausgeschaltet	<pre>u erscheint f ür 10 Sekunden</pre>

12.11 Anzeige von kurzzeitigen Limitierungen

Wenn der Generator durch eine oder mehrere Limitierungen auch nur kurzzeitig die Leistung reduziert, wird ein entsprechendes Status Flags gesetzt.

In der FLUXRON App sind die gesetzten Flags im Status unter "FLX Flags" abrufbar. Die Flags selber werden nur bei Power–up oder durch Beschreiben des Parameters "FLX Flags" mit dem Wert Null zurückgesetzt. Die einzelnen Flags haben folgende Bedeutung:

Bit 0	Kommunikationsfehler	Es wurden Kommunikationsfehler am CAN-Bus detektiert					
Bit 1	Level act below 100%	Der Aussteuergrad	Der Aussteuergrad war innerhalb des Zeitintervalls auch mal unter 100%				
Bit 2	Overcurrent (Software)	Die Überstromreduktion hat kurzangesprochen und die Abgabeleistung					
Bit 3	Leerkochschutz	Der Leerkochschut	z hat vorsichtshalbe	r die Leistung mal kur	z reduziert		
Bit 4	Halbleiterüberhitzung	Die Leistungsabga	be wurde zum Schut	tz der Halbleiter kurzz	eitg eingeschränkt		
Bit 5	Maximalleistung	Die konfigurierbare	Maximalleistung wu	irde im Betrieb mal er	reicht		
Bit 6	Spulenübertemperatur	Die konfigurierbare	e Maximalleistung wu	irde im Betrieb mal er	reicht		
Bit 7	Spulenüberstrom	Der Überstromabschaltung hat die Abgabeleistung kurzzeitig mal limitiert					
Bit 8	Überspannung	Der Überspannungsschutz hat die Abgabeleistung limitiert					
Bit 9	Spulenüberlast	Der Überlastschutz	z der Spulen hat die	Abgabeleistung limitie	ert		
Bit 10	Anschlussleistung erreicht	Die Maximalleistur	ig im Netzwerkverbu	nd wurde kurzzeitg üb	perschritten		
Bit 11	PowerShift Reduktion	Die PowerShift Fu	nktion hat die Abgab	eleistung auch mal lim	nitiert		
Bit 12	OPT1 – Input active	Die Leistungsredul	ktion war aktiv				
Bit 13	Phasenausfall	Ausfall einer Phase	e wurde erkannt				
Bit 14	App4 Sensor 3	Sensor 4 Überwac	hung des Applikatior	nsprograms 4 hat ange	esprochen		
Bit 15	App4 Sensor 4	Sensor 4 Überwac	hung des Applikatior	nsprograms 4 hat ange	esprochen		
		Index	Subindex	Default	Туре		
FLX flag	S	0x3036	13	-	Unsigned-16		

12.12 Leistungs- und Status Messintervalle

Über ein Zeitintervall, welches über Parameter "PMG Power history interval" von 1 bis 60 Minuten einstellbar ist, ermittelt der Generator die durchschnittliche Abgabeleistung und sammelt Statusinformationen. Nach Ablauf des Zeitintervals werden die Messwerte gespeichert, das Messsystem zurückgesetzt und automatisch neue gestartet.

In den Parameteren "PMG Status history last interval" können die gespeicherten Statusinformationen des letzten Intervals ausgelesen werden. Dabei haben die einzelnen Statusbits folgende Bedeutung:

- Bit 0 Topferkennung
- Bit 1 Externe Leistungsreduktion
- Bit 2 Maximale Anlagenleistung
- Bit 3 Limitation Gradient
- Bit 4 Spulenüberlast
- Bit 5 Überhitzung der Kochzone
- Bit 6 Überspannung
- Bit 7 Fehler

- Kochzone eingeschaltet aber zweitweise kein induktionstauglicher Kochtopf erkannt Die Leistungsoptimierunganlage hat zweitweise die Abgabeleistung begrenzt
- leistung Die maximale Abgabeleistung im Geräteverbund wurde zeitweise erreicht
 - Der Leerkochschutz hat zeitweise die Abgabeleistung begrenzt
 - Der Spulenschutz hat zeitweise die Abgabeleistung begrenzt
 - Die Kochzone hat wegen Überhitzung zeitweise die Leistungsabgabe begrenzt
 - Der Überspannungsschutz hat die Leistungsabgabe kurzzeitig begrenzt

Im Parameter "PMG Power history last interval" kann die gemittelte Abgabenleistung des letzten Intervalls in Watt ausgelesen werden.

	Index	Subindex	Default	Туре
PMG Power history interval	0x2003	0x10	15 (min)	Unsigned-8
PMG Power history last interval	0x2003	0x12	- (W)	Unsigned-16
PMG Status history last interval	0x2003	0x15	-	Unsigned-8

Über die Trace-Funktion des Programmes FLXaccess können die Werte "PMG Power history" und "PMG Status history" der letzten 1024 Intervalle jederzeit geladen und grapisch über Datum und Uhrzeit dargestellt werden. Zur optimalen Anzeige sollte als Trigger der Parameter "TRA sample index" mit der Triggerbedingung "==0" konfiguriert und nach dem Download Setup ein "Single Shot ausgelöst werden.

Bei einer Intervallzeit von 1 Minute können so die letzten 17 Stunden aufgezeichnet werden. Bei einer Intervallzeit von 15 Minuten (Default) können so die letzten 10 Tage aufgezeichnet werden. Bei einer Intervallzeit von 60 Minuten können so die letzten 6 Wochen aufgezeichnet werden.

Achtung bei einem Stromausfall (Power-down) werden alle Intervall – Messdaten gelöscht. Die Aufzeichung der Intervall-Messdaten startet nach Power- up automatisch von Neuem.

13 Fehlerspeicher

Der Induktionsgenerator ist in der Lage, die letzten zehn aufgetretenen Fehler intern zu speichern. Dabei wird der Fehlertyp als auch die damalige Einschaltzeit abgelegt. Über die Parameter "Error 1, bis "Error 10" können die Daten ausgelesen werden. Im Error 1 ist immer der letzte Fehler abgelegt.

	Index	Subindex	Default	Туре
Error 1 (Nr / Time)	0x3005	1	-	Unsigned-32
Error 2 (Nr / Time)	0x3005	2	-	Unsigned-32
Error 3 (Nr / Time)	0x3005	3	-	Unsigned-32
Error 4 (Nr / Time)	0x3005	4	-	Unsigned-32
Error 5 (Nr / Time)	0x3005	5	-	Unsigned-32
Error 6 (Nr / Time)	0x3005	6	-	Unsigned-32
Error 7 (Nr / Time)	0x3005	7	-	Unsigned-32
Error 8 (Nr / Time)	0x3005	8	-	Unsigned-32
Error 9 (Nr / Time)	0x3005	9	-	Unsigned-32
Error 10 (Nr / Time)	0x3005	A	-	Unsigned-32

Beispiel:

Die Errorcodes werden im folgenden Format angezeigt:

Error 1 (Nr / Time)

Zeit, nachdem der Fehler aufgetreten ist

Fehler - Nummer

14 Fehlerbehebung

14.1 Fehleranzeige

Im Betriebsfall leuchtet die Status LED konstant.

Im Fehlerfall blinkt die Anzeige jedoch entsprechend dem Fehlercode. Die Anzahl dieser kurzen Impulse entspricht der Nummer des Fehlers.

Beispiel: Fehler E05 (Unterbruch Sollwertvorgabe):

Bei S- und C-Klasse

Im Fall von Warnungen blinkt die LED ein- oder mehrmals gleichmässig auf.

Beispiel: Warnung "Kein Topf erkannt" (Kochzone ohne aufgesetzten Induktionstopf eingeschaltet):

Über die optionale 7-Segment Anzeige können direkt die Fehlercodes und Warnhinweise direkt angezeigt werden. Somit wird zum Beispiel bei einem E05-Fehler auf dem rechten Segment zuerst ein E

und dann hintereinander die zwei Zahlen 🛛 5, bei der Warnung "Kein Topf erkannt" ein 🗳 und bei der Warnung "Wiedereinschaltschutz" ein 🖣 ausgegeben.

Fehler- code	Fehleran- zeige	Bedeutung	Mögliche Fehlerbehebung	Quittierung
1		Kein Topf erkannt	 Wok / Topf auf die Kochzone setzen Grösseren Wok / Topf einsetzen Induktionstaugliche Töpfe verwenden Gerät ausschalten 	automatisch
2	E02	Spulenstrom zu gross	Induktionstaugliche Töpfe verwendenKontaktieren Sie das Fachpersonal	automatisch
3	E03	Maximale Gerätetemperatur überschritten	 Luftzufuhr zum Gerät sicherstellen Kochgerät auskühlen lassen Kochleistung reduzieren. 	automatisch
4	E04	Leerkochschutz aktiviert	 Leergekochte Töpfe entfernen Kochfeld auskühlen lassen und Knebel kurz in die Nullposition drehen. 	manuell, Knebel auf 0-Position
5	EOS	Störung bei Kochstufenvorgabe	 Knebelstellung variieren / Verdrahtung der Bedienung überprüfen. 	automatisch
6	E06	Ablauf der erlaub- ten Betriebsstunden	 Betriebsstundenbegrenzung deaktivie- ren Betriebsstundenfreigabe erhöhen. 	automatisch
7	ЕОЛ	IGBT- Temperatursensor – Fehler	Fachpersonal / Service kontaktieren	automatisch
8	E08	Gerät Übertemperatur	 Luftzufuhr zum Gerät sicherstellen Umgebungstemperatur senken Verstopfte Fettfilter reinigen 	automatisch
9	E09	Bei Topferkennung ist Kochfeldtempe- ratur noch zu heiss	Kochfeld abkühlen lassen	automatisch
10	E 10	Netzunterspannung (<180VAC)	Netzsicherung überprüfenStabile Stromversorgung sicherstellen	automatisch
11	E 1 1	Kommunikations- störung	 Störung/Unterbruch Datenbus Spulenkabel von Netz und Steuerlei- tungen getrennt verlegen 	automatisch
12	E 12	Kochfeld Übertemperatur	 Kochstufe reduzieren Kochgerät ausschalten und auskühlen lassen Controlinduc® Töpfe sollten nicht im Dauerbetrieb verwendet werden. 	automatisch
13	E 13	Störung bei Temperaturmes- sung	 Kochgerät ausschalten und auskühlen Controlinduc® Töpfe sollten nicht im Dauerbetrieb verwendet werden. Verdrahtung der Temperaturfühler o- der oder Konfiguration überprüfen 	automatisch
14	E IH		Hersteller kontaktieren	automatisch

14.2 Fehlercodes

heating<mark>xcoo</mark>king

15	E 15	Gegenseitige Beeinflussung zweier Kochzonen	 Abstand zwischen den Zonen / ge- trennten Spulen erhöhen Topf nicht über oder zwischen zwei Zonen platzieren 	automatisch
16	E 16		Hersteller kontaktieren	automatisch
17	Е П	Stromüberwa- chungsfehler	Fachpersonal / Service kontaktieren	automatisch
18	E 18	Magnetfeld am Hall- Knebel zu schwach	 Knebel-Elektronik gleichmässig am Vorsetzschalter aufsetzen Hall-Knebel defekt 	automatisch
19	E 19	Verbindungsfehler zwischen Spule und Generator	 Spulenanschluss überprüfen Spulenkabel auf Unterbruch überprüfen 	Manuel, Knebel auf 0- Position
20	E20	Sicherheitsabschal- tung wegen Diskre- panz zwischen Si- cherheits- und Hauptrechner –	 keine doppelte Freigabe - Netzzulei- tung kurz unterbrechen Knebel oder Knebelkabel defekt 	automatisch
21	ES 1	Applikationsfühler Gradientenüberach- ung	 Die Leistungszufuhr korreliert nicht mit der gemessenen Temperaturänderung Platzierung Applikationsfühler über- prüfen 	Manuell, Knebel in 0-Position
22	E22	Applikationsfühler Anschlussfehler	 Anschluss des exteren Temperatur- fühlers überprüfen Gerätekonfiguration ändern 	automatisch
23	623	Überspannung	 Netzspannung überprüfen Netzanschluss kontrollieren Magnetische Kopplung zu anderen In- duktionssystemen reduzieren 	automatisch
24	E24		Hersteller kontaktieren	automatisch
31	E3 I	Applikationsfühler Anschlussfehler	 Anschluss des applikationsspezifischen Temperaturfühlers der Spule A überprüfen Gerätekonfiguration ändern 	automatisch
32	E32	Applikationsfühler Übertemperatur	 Applikation der Spule A ausschalten und auskühlen lassen Gerätekonfiguration ändern 	automatisch
33	E33	Spulen Temperar- turfühler Anschluss- fehler	 Verdrahtung des Temperaturfühlers von Spule A überprüfen Gerätekonfiguration ändern 	automatisch
34	E34	Spulen Übertempe- ratur	 Heizbereich der Spule A ausschalten und auskühlen lassen Gerätekonfiguration ändern 	automatisch
35	E 35		Hersteller kontaktieren	automatisch

41	ЕЧТ	Applikationsfühler Anschlussfehler	 Anschluss des applikationsspezifi- schen Temperaturfühlers der Spule B überprüfen Gerätekonfiguration ändern 	automatisch
42	E42	Applikationsfühler Übertemperatur	 Applikation der Spule B ausschalten und auskühlen lassen Gerätekonfiguration ändern 	automatisch
43	E43	Spulen Temperar- turfühler Anschluss- fehler	 Verdrahtung des Temperaturfühlers von Spule B überprüfen Gerätekonfiguration ändern 	automatisch
44	ЕЧЧ	Spulen Übertempe- ratur	Heizbereich der Spule B ausschalten und auskühlen lassenGerätekonfiguration ändern	automatisch
45	E45		Hersteller kontaktieren	automatisch
50	E50	Übertemperatur an SENS3	 Heizbereich der kundenspezifischen Spule ausschalten und auskühlen las- sen Gerätekonfiguration ändern 	automatisch
51	E5 I	Spulen Temperar- turfühler Anschluss- fehler	 Verdrahtung des Temperaturfühlers der kundenspezifischen Spule über- prüfen Gerätekonfiguration ändern 	automatisch
52	E52	Pyrometer Über- temperatur	Induktionsheizung ausschalten und System auskühlen lassenGerätekonfiguration ändern	automatisch
53	E53	Pyrometer An- schlussfehler	 Verdrahtung zu Infrarot Thermometer überprüfen Gerätekonfiguration ändern 	automatisch
54	E54	Applikationsstecker	 Applikationsspezifisches Stecksystem überprüfen Gerätekonfiguration ändern 	automatisch
55	E55	Pyrometer Gradien- tenüberachung	 Die Leistungszufuhr korreliert nicht mit der gemessenen Temperaturänderung Platzierung Pyrometer überprüfen Gerätekonfiguration ändern 	automatisch
56	E56	Übertemperatur an SENS4	Gerät ausschalten und auskühlen las- senGerätekonfiguration ändern	automatisch
57	E57	Ferrite Temperar- turfühler Anschluss- fehler	 Verdrahtung der Temperaturfühler überprüfen Gerätekonfiguration ändern 	automatisch
58	E58	Zu hohe Dynamik in der Temperartur- messung	 Kontaktierung des Temperatursensors überprüfen Gerätekonfiguration ändern 	Manuell, Knebel in 0-Position
59	E59		Hersteller kontaktieren	automatisch

14.3 Warnungen

Fehler- code	Fehleran- zeige	Bedeutung	Mögliche Fehlerbehebung	Quittierung
	Ρ	Wiedereinschalt- schutz nach Stro- munterbruch	Knebel kurz drehen und dann wieder Kochstufe anwählenGerätekonfiguration ändern	automatisch
	F	Hohe Kühlkörpertempera- tur	Ausreichende Kühlluftzufuhr sicher- stellenFettfilter reinigen	Nach 10 s
	Ш	Phasenausfall	Netzanschluss kontrollierenSicherungen einsehen	Nach 10 s
	R	Gerät im Sla- vemode	Slaveanzeige notfalls deaktivierenSlavemode notfalls umkonfigurieren	automatisch
	-	Restwärme auf Kochfeld vorhanden	 Kochfeldtemperatur auf unter 50°C abgekühlen lassen 	automatisch
	•	Leistungsreduktion	Energieoptimierung aktivPhasenausfallÜberhitzungsschutz aktiv	automatisch

14.4 Mögliche Fehlerursachen und Gegenmassnahmen

Fehler	Mögliche Ursache	Gegenmassnahmen
Gerät heizt nicht, Anzeige ist aus	Keine Netzversorgung	 Überprüfen Sie den Netzanschluss Kontrollieren Sie, ob das Gerät eingesteckt ist
	Gerät ist nicht eingeschaltet	Schalten Sie das Gerät ein
	Wok oder Topf wird nicht er- kannt	 Prüfen Sie, ob der Topfboden flach ist Überprüfen Sie, ob der Topf zu klein ist Kontrollieren Sie, ob sich der Topf über dem Spulenzentrum befindet Verwenden Sie einen induktionstaugli- chen Wok/Topf
Gorät hoizt nicht	Wok oder Topf ist ungeeignet	Benützen Sie einen induktionstauglichen Wok/Topf
Anzeige blinkt	Luft Ein-/Austritt ist blockiert	 Stellen Sie das Gerät an einen geeigne- ten Ort f ür optimalen Luft Ein-/Austritt
	Umgebungstemperatur	 Kontrollieren Sie, ob die Temperatur beim Lufteintritt kleiner als 40°C ist
	Gerät defekt	 Trennen Sie das Gerät vom Netz und kontaktieren Sie das Fachpersonal

	Wok oder Topf ist ungeeignet	 Verwenden Sie einen geeigneten Wok/Topf Vergleichen Sie die Leistung mit einem vom Hersteller empfohlenen Wok/Topf Heizleistung kann zu klein sein, wenn der Wok-Radius nicht optimal ist!
Anzeige blinkt	Umgebungstemperatur zu hoch	 Prüfen Sie, ob die Temperatur beim Lufteintritt kleiner als 40°C ist
nicht, Heizwirkung ungenügend	Heizzone oder interne Induk- tionsspule ist zu heiss. Wok oder Topf ist leer.	 Kochgerät abschalten. Entfernen Sie den Wok oder Topf. Warten Sie, bis sich die Heizzone abkühlt.
	Luft Ein-/Austritt behindert	Entfernen Sie das störende Element
	Umgebungstemperatur	 Prüfen Sie, ob die Temperatur beim Lufteintritt kleiner als 40°C ist
	Gerät defekt	 Ziehen Sie den Netzstecker und kontaktieren Sie das Fachpersonal
Heizwirkung nicht konstant,	Luft Ein-/Austritt behindert	 Entfernen Sie das störende Element Platzieren Sie das Gerät an einem ge- eigneten Ort.
ernd	Fettfilter verstopft	 Trennen Sie das Gerät vom Netz und reinigen Sie den Fettfilter
Heizwirkung nicht konstant, Lüfter läuft nicht	Lüfter, Lüfter Ansteuerung defekt	 Trennen Sie das Gerät vom Netz und kontaktieren Sie das Fachpersonal
Heizwirkung lässt	Heizzone oder interne Spule ist zu heiss	 Schalten Sie das Gerät aus und warten Sie bis es abgekühlt ist
nach langem Ge- brauch nach	Wok/Topf leer gekocht	 Entfernen Sie Wok/Topf, schalten Sie das Gerät aus und warten Sie bis es ab- gekühlt ist
7-Segmentanzeige	7-Segmentanzeige verdreht eingesteckt	 Stecken Sie den Stecker um 180° gedreht ein.
richtig	Interface zu 7-Segmentan- zeige defekt	Trennen Sie das Gerät vom Netz und kon- taktieren Sie das Fachpersonal
Knebel funktioniert nicht richtig	Knebel defekt	 Schliessen Sie einen funktionsfähigen Knebel an, um den Defekt zu bestätigen Trennen Sie das Gerät vom Netz und kon- taktieren Sie das Fachpersonal
	Bluetooth Modul nicht einge- steckt	 Falls kein Bluetooth Modul bestückt ist, stecken Sie den Bluetooth Dongle ein
Keine korrekte	Bluetooth nicht sichtbar	Versorgungsspannung kurz ausschalten und nach 2 Sekunden wieder einschalten
Bluetooth Kommunikation möglich	Falsches Bluetooth-Gerät an- gewählt	 Trennen Sie die Bluetooth Verbindung Scannen Sie nach Bluetooth Geräten und wählen Sie das korrekte Gerät aus
	Paarung / Kopplung nicht möglich	 Korrekten Bluetooth-PIN verwenden Bei PIN-Verlust kontaktieren Sie das Fachpersonal

15 Sicherheitsinformationen

15.1 Risiko bei Nichtbeachten der Sicherheitsanweisung

Diese Anleitung beinhaltet Sicherheitshinweise und Warnungen für die Installation und Betrieb des Gerätes. Ein Nichtbeachten dieser Informationen kann zur Gefährdung für Mensch, Umwelt und Einrichtung führen. Folgende Risiken sind vorhanden:

- Elektrischer Schlag
- Überhitzen von Woks/Töpfen
- Überhitzen von Geräteoberflächen

15.2 Sicherheitsanweisung

Die in dieser Anleitung angegebenen Sicherheitsanweisungen sowie die im entsprechenden Land gültigen Sicherheitsnormen sind strikte einzuhalten.

15.3 Anwenderinformationen

Um elektrische Unfälle zu vermeiden, muss die Installation und Anschluss gemäss gültigen Normen durch autorisiertes Personal vorgenommen werden.

Auf der Heizzone können hohe Temperaturen auftreten. Um Verletzungen zu vermeiden, darf diese Heizzone nicht berührt werden.

Um ein Leerkochen von Töpfen (Glühen, Aufschmelzen von Aluminium Sandwich Topfböden) zu verhindern, dürfen die Geräte nie unbeobachtet betrieben werden.

Lassen Sie das Gerät ebenfalls nicht ohne Topf unbeaufsichtigt in Betrieb. Die automatische Topferkennung schaltet das Gerät nicht vollständig aus. Um Unfälle durch selbständiges Starten zu vermeiden, ist das Gerät vor dem Wegnehmen der Töpfe auszuschalten. Jeder, der das Gerät benutzen möchte, soll es selber einschalten müssen. Unbeobachtete Geräte sind darum immer auszuschalten.

Legen Sie nie Papier, Karton, Textilien und andere Gegenstände zwischen Gerät und Töpfe. Durch Wärmerückstrahlung können sie leicht entflammen.

Keine metallischen Gegenstände wie Küchengengenstände, Aluminiumfolien, Schlüssel etc. auf die Heizzone legen, da diese sehr schnell heiss werden können.

Keine Uhren oder Ringe tragen, da diese in der Nähe vom laufenden Gerät schnell heiss werden können.

Personen mit Herzschrittmacher müssen sich bei Hersteller und Arzt erkundigen, bevor sie Induktionsgeneratoren verwenden dürfen.

Das Gerät muss immer geerdet sein. Sobald ein defektes Glas, Gehäuse oder Kabel entdeckt wird, muss das Gerät umgehend vom Netz getrennt werden. Für das weitere Vorgehen muss der zuständige Händler oder Hersteller kontaktiert werden.

Keine Aluminiumfolie oder Plastikteile auf das Keramikglas legen. Die Heizzone darf nicht als Abstellfläche genutzt werden.

Der Topf soll zum eingezeichneten Feld auf der Glaskeramik passen. Ein Nichtbeachten dieser Regel kann zu reduzierter Leistung oder zu Betriebsstörungen des Gerätes führen.

Weder Kreditkarten, Telefonkarten, etc. noch andere magnetische Gegenstände auf das Gerät legen. Diese Gegenstände können zerstört werden.

Das Gerät enthält ein Luftkühlsystem. Auf keinen Fall dürfen die Lufteintritt- oder Luftauslassschlitze blockiert werden.

Niemals Flüssigkeiten ins Gerät eintreten lassen. Das Gerät nie mit einem Dampfreiniger, Wasserstrahl oder Hochdruckreiniger säubern.

Wenn Brüche oder Sprünge in der Glaskeramik oder eine verletzte Klebstelle entdeckt werden, muss umgehend der Netzstecker gezogen werden. Niemals freiliegende Teile des Gerätes berühren.

Das Gerät darf nur innerhalb der spezifizierten Werte benutzt werden. Sonst kann ein unzuverlässiger Betrieb entstehen oder das Gerät kann beschädigt werden.

Nach dem Ausschalten des Gerätes muss drei Sekunden gewartet werden, bevor es wieder eigeschaltet werden kann. Ein regelmässiges, schnelles Wiedereinschalten reduziert die Lebensdauer des Gerätes.

Regelmässiges Reinigen und Unterhalten erhöht die Lebensdauer des Gerätes beträchtlich.

Im Innern des Gerätes gibt es lebensgefährliche Spannungen. Das Gerät darf nur durch autorisiertes Personal geöffnet werden.

Um Missbrauch zu verhindern, müssen ausser Betrieb gesetzte Geräte durch den Anwender sicher gelagert oder professionell entsorgt werden.

Mechanische Beschädigungen an der Glaskeramik, dem Gehäuse, dem Topf und dem Knebel unterliegen nicht der Herstellergarantie.

15.4 Unautorisierte Änderungen und Ersatzteile

Nehmen Sie keinerlei Änderungen am Gerät vor. Für Modifikationen oder Reparaturen wenden Sie sich an den Händler oder den Hersteller.

Aus Sicherheitsgründen dürfen nur vom Hersteller freigegebene Komponenten eingesetzt werden. Bei Verwendung nicht freigegebener Bauteile erlöschen jegliche Garantie- und Haftungsansprüche.

16 Wartung

Um das Gerät über lange Zeit in einem guten Zustand zu halten sind Reinigung und Service regelmässig durchzuführen. Der Luftfilter muss mindestens alle 3 Monate gereinigt werden. Pro Jahr muss das Gerät mindestens einmal vom technischen Fachpersonal auf Sicherheitsmängel geprüft werden.

Gefahr: Öffnen Sie das Gerät unter keinen Umständen, da das Risiko eines Stromschlags besteht. Es darf nur von autorisiertem Fachpersonal geöffnet werden.

17 Entsorgung

Um Missbrauch zu verhindern, müssen ausser Betrieb gesetzte Geräte vom Anwender weggeschlossen und entsorgt werden. Benutzen Sie keine nicht freigegebenen oder ausser Betrieb gesetzten Geräte.

Das Gerät wurde gemäss RohS Standard gebaut. D.h. Es enthält weder gefährliche Substanzen noch Batterien.

18 Approbationen

Die Geräte sind nach den folgenden einschlägigen Normen geprüft und zertifiziert:

EMV-Richtlinie	2004/108/EG
Niederspannungs- richtlinie	2006/95/EG
	EN 55011:2009 + A1:
	EN 55014-2:1997 + A1:2001 +A2
Elektromagnetische Verträglichkeit	EN 61000-3-2:2008
g	EN 61000-3-3:2008
	EN 62233:2008
Sicherheit	EN 60335-1:2002 + A11:2004 + A1:2004 + A12:2006 + A2:2006 +A13+A14
	EN 60335-2-36:2002 + A1:2004+A2

19 Service

Im Störungsfall wenden Sie sich bitte an Ihren Servicedienstleister. Seine Kontaktdaten sind auf dem Typenschild ersichtlich.

20 Kontakt

Hauptsitz	Zweigniederlassung
Schweiz	Österreich
FLUXRON Solutions AG Amriswilerstrasse 82 CH-8589 Sitterdorf	FLUXRON Solutions AG Im Bradafos 14 A-6820 Frastanz
T +41 (0)71 511 38 80 F +41 (0)71 511 38 89 info@fluxron.com	T +43 (0)720 515 088 info@fluxron.com

Commercial	Commercial
Deutschland	France
T +49 (0)3222 1090 637 info@fluxron.com	T +33 (0)975 181 783 181 info@fluxron.com

Bemerkung:

© 2016 FLUXRON Solutions AG - Dieses Werk ist urheberrechtl

21 Konformitätserklärung

heatingxcooking

EG-Konformitätserklärung

entsprechend den EG-Richtlinien 2006/95/EG und 2004/108/EG Wir, die FLUXRON Solutions AG, Weinfelderstrasse 82, CH-8580 Amriswil erklären in alleiniger Verantwortung, dass folgende Produkte von Induktiven Kochheizgeräten der Built-in BAX Produktfamilie

•	FLX-203.10yy-xx	IBI/YYYY / 7SEG		
•	FLX-203.12yy-xx	IBI/ YYYY /7SEG/LIFT		
•	FLX-203.13yy-xx	IBI/ YY YY / 7SEG/LIFT/BLUE		
•	FLX-203.14yy-xx	IBI/ YYYY/LED/LIFT		
•	FLX-203.15yy-xx	IBI/ YYYY / LED		
•	FLX-203.17yy-xx	IBI/ YYYY / LED/ LIFT		
•	FLX-203.18yy-xx	IBI/ YYYY/LED/LIFT/BLUE		
für die Grösse, Form und Leistungsfähigkeit von OO bis 99 steht				
	yy=11 -> YYYY =1AC230/3	3.5kW/C240		
	w=13 -> YYYY =3AC400/5	5.0kW/C240		

240 yy=23 -> YY...YY =3AC400/5.0kW/W300 w=33 -> YY...YY =3AC400/5.0kW/C270 yy=38 -> YY...YY =3AC400/5.0kW/2R130x270 yy=37 -> YY...YY =3AC400/8.0kW/C270 w=47 -> YY...YY =3AC400/8.0kW/C305

wobei xx für die kundenspezifische Nummer von 00 bis 99 steht

auf die sich diese Erklärung bezieht, den Schutzanforderungen und Sicherheitszielen der EG-Richtlinien

- (2004/108/EG) über die elektromagnetische Verträglichkeit
- (2006/95/EG) betreffend elektrische Betriebsmittel zur
- Verwendung innerhalb bestimmter Spannungsgrenzen

entsprechen.

wobei yy

Zur sachgerechten Umsetzung der in den EG-Richtlinien genannten Schutzanforderungen und Sicherheitszielen wurden folgende Normen herangezogen:

- EN 55011:2009 + A1 / EN 55014-2: 1997 + A1:2001 + A2
- EN 6100-3-2:2008 / EN 61000-3-3:2008 / EN 62233:2008 EN 60335-1:2002 + A11:2004 +A1:2004 + A12:2006 + A2:2006 + A13 + A14
- EN 60335-2-36:2002 + A1:2004 + A2

Die Konformität wird mit den oben aufgeführten Normen und der für die Benutzung wichtigen Sicherheitskriterien für das fertige Kochgerät nachgewiesen.

Amriswil, 27. Juli 2015

B Jard

Benno Jäckle Geschäftsführer

future inside

FLUXRON Solutions AG X Weinfeldenstrasse 82 X CH-8560 Amrilewil X P +41 (0071 511 38 80 X F +41 (0171 511 38 89 X info@fluxron.com X fluxron.com